scholarly journals Contribution to the knowledge of diversity of Fusarium associated with maize in Malaysia

2011 ◽  
Vol 47 (No. 1) ◽  
pp. 20-24 ◽  
Author(s):  
M.Z. Nur Ain Izzati ◽  
A.R. Azmi ◽  
M.S. Siti Nordahliawate ◽  
J. Norazlina

The Fusarium species associated with maize are widely distributed in Malaysia. Eight Fusarium species were obtained in this country. A series of field samplings was conducted from 2006 to 2008, when 167 Fusarium isolates were obtained from maize plants in seven locations throughout Malaysia. The determination was based on micro- and macromorphological features (growth rates, colony features, mode of production of microconidia, macroconidia, conidiophores, and chlamydospores). F. proliferatum (29.9% isolates), F. semitectum (22.2% isolates), F. verticillioides (13.7% isolates), and F. subglutinans (12.6% isolates) were found out most frequently. F. equiseti, F. pseudograminearum, F. oxysporum, and F. solani were also isolated. This is the first report on the occurrence of F. equiseti, F. pseudograminearum, and F. subglutinans associated with maize plants in Malaysia.

Plant Disease ◽  
2021 ◽  
Author(s):  
Xiaojie Zhang ◽  
Cheng Guo ◽  
Chunming Wang ◽  
Tianwang Zhou

Maize (Zea Mays L.) is one of the main crops in Ningxia Province, China, and stalk rot has become a serious disease of maize in this area. Infected plants showed softening of the stalks at lower internodes, which lodged easily and died prematurely during grain filling, and the pith tissue internally appeared to be disintegrating and slightly brown to reddish. In September 2018, symptomatic tissue was collected from seventeen locations in Ningxia. The incidence ranged from 5% to 40% in surveyed fields, reaching as high as 86% in certain plots. The discolored stalk pith tissues from the lesion region were cut into small pieces (approximately 0.5 × 0.2 cm), superficially disinfected with 75% ethanol for 1 min and rinsed three times with sterile water before plating on potato dextrose agar (PDA) medium with chloromycetin. The purified strains were obtained by single-spore separation and transferred to PDA and carnation leaf agar (CLA) medium. Morphological and molecular characteristics confirmed the presence of nine Fusarium species in these samples, including Fusarium graminearum species complex and Fusarium verticillioides. Four isolates of Fusarium nelsonii were recovered from samples collected in Shizuishan and Wuzhong. On PDA plates, the floccose to powdery, white to rose-colored aerial mycelia were produced and covered plates after 8 days of incubation, producing abundant mesoconidia and chlamydospores. Mesoconidia were fusiform or lanceolate until slightly curved with 0-3 septa, and chlamydospores were initially smooth and transparent, and became verrucous and light brown. Macroconidia produced in CLA were straight or curved and falcate, usually having 3-5 septa, with beak-shaped strongly curved apical cells and foot-shaped basal cells. Two isolates (SS-1-7 and ZY-2-2) were selected for molecular identification, and the total DNA was extracted using a fungal genomic DNA separation kit (Sangon Biotechnology, Shanghai, China). Sequence comparison of EF-1α (GenBank accession numbers MW294197 and MW294198) and RPB2 (Accession MW294176 and MW294177) genes showed 97% homology with the sequences of F. nelsonii reported in GenBank (accession MN120760 for TEF and accession MN120740 for RPB2). Pathogenicity tests with two isolates (SS-1-7 and ZY-2-2) were performed by individually inoculating five 10-leaf stage maize plants at between the 2nd and 3rd stem nodes from the soil level with 20 μl conidial suspension at a concentration of 106 conidia/ml as described by Zhang et al. (2016). Five maize plants inoculated with sterile water were used as controls. The inoculated plants were kept at 25 ± 0.5°C in the greenhouse with a photoperiod of 12 h. After 30 days, all plants inoculated with the conidial suspension formed an internal dark brown necrotic area around the inoculation site, whereas the control plants showed no symptoms. The pathogen was re-isolated from the necrotic tissue of the inoculated plants and identified by morphological characteristics as F. nelsonii. This species was first described by Marasas et al. (1998), and it is expanding its host range and has been isolated from sorghum, Medicago, wheat, and cucumber (Ahmad et al. 2020). The pathogen should be paid more attention owing to a serious risk of trichothecene and aflatoxin contamination (Astoreca et al. 2019; Lincy et al. 2011). To our knowledge, this is the first report of maize stalk rot caused by F. nelsonii in China. References: Ahmad, A., et al. 2020. Plant disease.1542 https://doi.org/10.1094/PDIS-11-19-2511-PDN Astoreca, A. L., et al. 2019. Eur. J. Plant Pathol. 155:381. Lincy, S. V., et al. 2011. World J. Microbiol. Biotechnol. 27:981. Marasas, W. F. O., et al. 1998. Mycologia 90:505. Zhang, Y., et al. 2016. PLoS Pathog. 12:e1005485. Funding: This research was financially supported by National R & D Plan of China (No.2019QZKK0303); Ningxia Agriculture and Forestry Academy Science and Technology Cooperation Project (DW-X-2018019)


1998 ◽  
Vol 88 (6) ◽  
pp. 550-555 ◽  
Author(s):  
T. K. Cotten ◽  
G. P. Munkvold

The roles of residue size and burial depth were assessed in the survival of Fusarium moniliforme, F. proliferatum, and F. subglutinans in maize stalk residue. Stalk pieces (small or large sizes) were soaked in a spore suspension of F. moniliforme, F. proliferatum, or F. subglutinans and placed in a field on the soil surface or buried at 15- or 30-cm depths. Residue pieces were recovered periodically, cultured on a selective medium, and microscopically examined for the presence of the inoculated Fusarium species. After 630 days, the inoculated Fusarium species were recovered from 0 to 50% of the inoculated stalk pieces in a long-term, continuous maize field, from 0 to 28% of the inoculated stalk pieces placed in a maize/soybean/oat rotation field, and from 0 to 25% of the noninoculated stalk pieces at both locations. Residue size and residue depth had significant effects on survival, but there were significant interactions among strain, depth, residue size, and time. Up to 343 days after placement in the field, survival of the three Fusarium species was not consistently different between buried residues and surface residues, but after 630 days, survival was greater from surface residues. Overall, fungus survival decreased more slowly in the surface residues than in the buried residues. Linear coefficients of determination ranged from 0.35 to 0.82 for the surface residues and from 0.81 to 0.98 for the buried residues. Decline in survival over time followed a more linear pattern in buried residues than in surface residues. Vegetative compatibility tests confirmed that F. moniliforme, F. proliferatum, and F. subglutinans strains can survive at least 630 days in surface or buried maize residue. These results demonstrate that maize residue can act as a long-term source of inoculum for infection of maize plants by these three Fusarium species.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1657-1657 ◽  
Author(s):  
J. H. Wang ◽  
Z. H. Feng ◽  
Z. Han ◽  
S. Q. Song ◽  
S. H. Lin ◽  
...  

Pepper (Capsicum annuum L.) is an important vegetable crop worldwide. Some Fusarium species can cause pepper fruit rot, leading to significant yield losses of pepper production and, for some Fusarium species, potential risk of mycotoxin contamination. A total of 106 diseased pepper fruit samples were collected from various pepper cultivars from seven provinces (Gansu, Hainan, Heilongjiang, Hunan, Shandong, Shanghai, and Zhejiang) in China during the 2012 growing season, where pepper production occurs on approximately 25,000 ha. Pepper fruit rot symptom incidence ranged from 5 to 20% in individual fields. Symptomatic fruit tissue was surface-sterilized in 0.1% HgCl2 for 1 min, dipped in 70% ethanol for 30 s, then rinsed in sterilized distilled water three times, dried, and plated in 90 mm diameter petri dishes containing potato dextrose agar (PDA). After incubation for 5 days at 28°C in the dark, putative Fusarium colonies were purified by single-sporing. Forty-three Fusarium strains were isolated and identified to species as described previously (1,2). Morphological characteristics of one strain were identical to those of F. concentricum. Aerial mycelium was reddish-white with an average growth rate of 4.2 to 4.3 mm/day at 25°C in the dark on PDA. Pigments in the agar were formed in alternating red and orange concentric rings. Microconidia were 0- to 1-septate, mostly 0-septate, and oval, obovoid to allantoid. Macroconidia were relatively slender with no significant curvature, 3- to 5-septate, with a beaked apical cell and a foot-shaped basal cell. To confirm the species identity, the partial TEF gene sequence (646 bp) was amplified and sequenced (GenBank Accession No. KC816735). A BLASTn search with TEF gene sequences in NCBI and the Fusarium ID databases revealed 99.7 and 100% sequence identity, respectively, to known TEF sequences of F. concentricum. Thus, both morphological and molecular criteria supported identification of the strain as F. concentricum. This strain was deposited as Accession MUCL 54697 (http://bccm.belspo.be/about/mucl.php). Pathogenicity of the strain was confirmed by inoculating 10 wounded, mature pepper fruits that had been harvested 70 days after planting the cultivar Zhongjiao-5 with a conidial suspension (1 × 106 spores/ml), as described previously (3). A control treatment consisted of inoculating 10 pepper fruits of the same cultivar with sterilized distilled water. The fruit were incubated at 25°C in a moist chamber, and the experiment was repeated independently in triplicate. Initially, green to dark brown lesions were observed on the outer surface of inoculated fruit. Typical soft-rot symptoms and lesions were observed on the inner wall when the fruit were cut open 10 days post-inoculation. Some infected seeds in the fruits were grayish-black and covered by mycelium, similar to the original fruit symptoms observed at the sampling sites. The control fruit remained healthy after 10 days of incubation. The same fungus was isolated from the inoculated infected fruit using the method described above, but no fungal growth was observed from the control fruit. To our knowledge, this is the first report of F. concentricum causing a pepper fruit rot. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006. (2) K. O'Donnell et al. Proc. Nat. Acad. Sci. USA 95:2044, 1998. (3) Y. Yang et al. 2011. Int. J. Food Microbiol. 151:150, 2011.


2016 ◽  
Vol 44 (2) ◽  
pp. 411-417 ◽  
Author(s):  
Snežana PAVLOVIC ◽  
Danijela RISTIC ◽  
Ivan VUCUROVIC ◽  
Miloš STEVANOVIC ◽  
Saša STOJANOVIC ◽  
...  

Anise (Pimpinella anisum L.) is an important medicinal spice plant that belongs to the family Apiaceae. Anise seeds are rich in essential oils and this is a reason why anise production in Serbia has increased over the last decade. During a routine health inspection on anise seeds collected from three localities in the province of Vojvodina (Mošorin, Veliki Radinci and Ostojićevo) during 2012 and 2013, it was found out that Fusarium spp. were a commonly observed fungi. The presence of Fusarium fungion the seed samples ranged from 3.75-13.75%. The aim of this study was to isolate and identify the strains of Fusarium species present on anise seed samples as it is necessary that commercially used anise seeds are completely free of Fusarium. Based on morphological, microscopic characteristics and a molecular identification by sequencing of TEF gene, the presence of the following species was confirmed on the anise seeds: F. tricinctum, F. proliferatum, F. equiseti, F. oxysporum, F. sporotrichoides, F. incarnatum and F. verticillioides. According to our knowledge and research, this is the first report of F. tricinctum and F. sporotrichoides as pathogens on anise seeds in the world. All seven isolates of Fusarium species are pathogenic to the anise seedlings, while the most virulent species were F. oxysporum, F. tricinctum and F. incarnatum.


Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 279-279 ◽  
Author(s):  
J.-H. Wang ◽  
H.-P. Li ◽  
J.-B. Zhang ◽  
B.-T. Wang ◽  
Y.-C. Liao

From September 2009 to October 2012, surveys to determine population structure of Fusarium species on maize were conducted in 22 provinces in China, where the disease incidence ranged from 5 to 20% in individual fields. Maize ears with clear symptoms of Fusarium ear rot (with a white to pink- or salmon-colored mold at the ear tip) were collected from fields. Symptomatic kernels were surface-sterilized (1 min in 0.1% HgCl2, and 30 s in 70% ethanol, followed by three rinses with sterile distilled water), dried, and placed on PDA. After incubation for 3 to 5 days at 28°C in the dark, fungal colonies displaying morphological characteristics of Fusarium spp. (2) were purified by transferring single spores and identified to species level by morphological characteristics (2), and DNA sequence analysis of translation elongation factor-1α (TEF) and β-tubulin genes. A large number of Fusarium species (mainly F. graminearum species complex, F. verticillioides, and F. proliferatum) were identified. These Fusarium species are the main causal agents of maize ear rot (2). Morphological characteristics of six strains from Anhui, Hubei, and Yunnan provinces were found to be identical to those of F. kyushuense (1), which was mixed with other Fusarium species in the natural infection in the field. Colonies grew fast on PDA with reddish-white and floccose mycelia. The average growth rate was 7 to 9 mm per day at 25°C in the dark. Reverse pigmentation was deep red. Microconidia were obovate, ellipsoidal to clavate, and 5.4 to 13.6 (average 8.8) μm in length. Macroconidia were straight or slightly curved, 3- to 5-septate, with a curved and acute apical cell, and 26.0 to 50.3 (average 38.7) μm in length. No chlamydospores were observed. Identity of the fungus was further investigated by sequence comparison of the partial TEF gene (primers EF1/2) and β-tubulin gene (primers T1/22) of one isolate (3). BLASTn analysis of the TEF amplicon (KC964133) and β-tubulin gene (KC964152) obtained with cognate sequences available in GenBank database revealed 99.3 and 99.8% sequence identity, respectively, to F. kyushuense. Pathogenicity tests were conducted twice by injecting 2 ml of a prepared spore suspension (5 × 105 spores/ml) into maize ears (10 per isolate of cv. Zhengdan958) through silk channel 4 days post-silk emergence under field conditions in Wuhan, China. Control plants were inoculated with sterile distilled water. The ears were harvested and evaluated 30 days post-inoculation. Reddish-white mold was observed on inoculated ears and the infected kernels were brown. No symptoms were observed on water controls. Koch's postulates were fulfilled by re-isolating the pathogen from infected kernels. F. kyushuense, first described on wheat in Japan (1), has also been isolated from rice seeds in China (4). It was reported to produce both Type A and Type B trichothecene mycotoxins (1), which cause toxicosis in animals. To our knowledge, this is the first report of F. kyushuense causing maize ear rot in China and this disease could represent a serious risk of yield losses and mycotoxin contamination in maize and other crops. The disease must be considered in existing disease management practices. References: (1) T. Aoki and K. O'Donnell. Mycoscience 39:1, 1998. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006. (3) F. Van Hove et al. Mycologia 103:570, 2011. (4) Z. H. Zhao and G. Z. Lu. Mycotaxon 102:119, 2007.


2011 ◽  
Vol 131 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Jonathan Scauflaire ◽  
Olivier Mahieu ◽  
Julien Louvieaux ◽  
Guy Foucart ◽  
Fabien Renard ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Oliul Hassan ◽  
Taehyun Chang

In South Korea, ovate-leaf atractylodes (OLA) (Atractylodes ovata) is cultivated for herbal medicine. During May to June 2019, a disease with damping off symptoms on OLA seedlings were observed at three farmer fields in Mungyeong, South Korea. Disease incidence was estimated as approximately 20% based on calculating the proportion of symptomatic seedlings in three randomly selected fields. Six randomly selected seedlings (two from each field) showing damping off symptoms were collected. Small pieces (1 cm2) were cut from infected roots, surface-sterilized (1 minute in 0.5% sodium hypochlorite), rinsed twice with sterile water, air-dried and then plated on potato dextrose agar (PDA, Difco, and Becton Dickinson). Hyphal tips were excised and transferred to fresh PDA. Six morphologically similar isolates were obtained from six samples. Seven-day-old colonies, incubated at 25 °C in the dark on PDA, were whitish with light purple mycelia on the upper side and white with light purple at the center on the reverse side. Macroconidia were 3–5 septate, curved, both ends were pointed, and were 19.8–36.62 × 3.3–4.7 µm (n= 30). Microconidia were cylindrical or ellipsoid and 5.5–11.6 × 2.5–3.8 µm (n=30). Chlamydospores were globose and 9.6 –16.3 × 9.4 – 15.0 µm (n=30). The morphological characteristics of present isolates were comparable with that of Fusarium species (Maryani et al. 2019). Genomic DNA was extracted from 4 days old cultures of each isolate of SRRM 4.2, SRRH3, and SRRH5, EF-1α and rpb2 region were amplified using EF792 + EF829, and RPB2-5f2 + RPB2-7cr primer sets, respectively (Carbone and Kohn, 1999; O'Donnell et al. 2010) and sequenced (GenBank accession number: LC569791- LC569793 and LC600806- LC600808). BLAST query against Fusarium loci sampled and multilocus sequence typing database revealed that 99–100% identity to corresponding sequences of the F. oxysporum species complex (strain NRRL 28395 and 26379). Maximum likelihood phylogenetic analysis with MEGA v. 6.0 using the concatenated sequencing data for EF-1α and rpb2 showed that the isolates belonged to F. oxysporum species complex. Each three healthy seedlings with similar sized (big flower sabju) were grown for 20 days in a plastic pot containing autoclaved peat soil was used for pathogenicity tests. Conidial suspensions (106 conidia mL−1) of 20 days old colonies per isolate (two isolates) were prepared in sterile water. Three pots per strain were inoculated either by pouring 50 ml of the conidial suspension or by the same quantity of sterile distilled water as control. After inoculation, all pots were incubated at 25 °C with a 16-hour light/8-hour dark cycle in a growth chamber. This experiment repeated twice. Inoculated seedlings were watered twice a week. Approximately 60% of the inoculated seedlings per strain wilted after 15 days of inoculation and control seedlings remained asymptomatic. Fusarium oxysporum was successfully isolated from infected seedling and identified based on morphology and EF-1α sequences data to confirm Koch’s postulates. Fusarium oxysporum is responsible for damping-off of many plant species, including larch, tomato, melon, bean, banana, cotton, chickpea, and Arabidopsis thaliana (Fourie et al. 2011; Hassan et al.2019). To the best of our knowledge, this is the first report on damping-off of ovate-leaf atractylodes caused by F. oxysporum in South Korea. This finding provides a basis for studying the epidemic and management of the disease.


Plant Disease ◽  
2005 ◽  
Vol 89 (10) ◽  
pp. 1130-1130 ◽  
Author(s):  
S. T. Koike ◽  
T. R. Gordon

Cilantro, or coriander (Coriandrum sativum), is a leafy vegetable in the Apiaceae and is grown commercially in California primarily for use as a fresh herb. During 2002 and 2003 in coastal California (Santa Barbara County), commercial cilantro fields showed symptoms of a wilt disease. Affected plants grew poorly and were stunted. Lower foliage turned yellow with reddish tinges, and plants wilted during warmer times of the day. The main stem, crown, and taproot exhibited vascular discoloration that was reddish to light brown. As disease progressed, plants eventually died. For both years, the disease distribution was limited to isolated small patches (each patch measuring less than 1 m2 in area). A fungus was consistently isolated from symptomatic vascular tissue in crowns and taproots. On the basis of colony and conidial morphology, the isolates were identified as Fusarium oxysporum (2). No other fungi or bacteria were recovered from these plants. To test pathogenicity, suspensions containing 1 × 106 conidia/ml were prepared for five isolates. The roots of 30-day-old cilantro plants of four cultivars (30 plants each of Festival, Leisure, Santo, and LSO 14) were clipped and then soaked in the suspensions for 20 min. The roots of 30 plants of each cultivar were soaked in water as a control. Plants were repotted into new redwood bark + peat moss rooting medium and maintained in a greenhouse setting at 24 to 26°C. After 1 month, 95% or more of the inoculated plants showed yellowing and vascular discoloration symptoms similar to those seen in the field. F. oxysporum was reisolated from all inoculated plants. The four cilantro cultivars did not show differences in disease severity. Control plants showed no symptoms, and the fungus was not recovered from these plants. The experiment was repeated and the results were the same. Experiments also were conducted to determine if cilantro isolates could cause disease in celery (Apium graveolens var. dulce). Celery transplants and cilantro seedlings were prepared and inoculated as described above. However, after 2 months, celery plants did not show any disease symptoms, while the cilantro developed wilt symptoms and eventually died. A Fusarium wilt disease has been reported on coriander in Argentina and India where the pathogen was named F. oxysporum f. sp. coriandrii (1,3). To our knowledge, this is the first report of Fusarium wilt of cilantro in California. References: (1) M. Madia et al. Fitopatologia 34:155, 1999. (2) P. E. Nelson et al. Fusarium species: An Illustrated Manual for Identification. Pennsylvania State University Press, University Park, 1983. (3) U. S. Srivastava. Indian Phytopathol. 22:406, 1969.


Plant Disease ◽  
2011 ◽  
Vol 95 (12) ◽  
pp. 1587-1587
Author(s):  
B. Singh ◽  
C. S. Kalha ◽  
V. K. Razdan ◽  
V. S. Verma

While screening newly introduced cultivars of walnut (Juglans regia) at Bhaderwah (Mini Kashmir), Jammu and Kashmir, India in September 2008, 60% of grafted plants were found to be dying because of a cankerous growth observed on seedling stems. Later, these symptoms extended to lateral branches. In the surveyed nurseries, cvs. SKU 0002 and Opex Dachaubaria were severely affected by the disease. Cankers were also observed in all walnut nurseries in the area with several wild seedlings also being observed to be exhibiting similar cankerous symptoms on stem and branches. Necrotic lesions from cankerous tissues on seedling stems were surface disinfested with 0.4% NaOCl for 1 min and these disinfected cankerous tissues were grown on potato dextrose agar (potato-250 g, dextrose-15 g, agar-15 g, distilled water-1 liter). A Fusarium sp. was isolated consistently from these cankerous tissues, which was purified using single-spore culture. Carnation leaf agar was used for further culture identification (2,3). The fungal colony was floccose, powdery white to rosy in appearance when kept for 7 days at 25 ± 2°C. Macroconidia were straight to slightly curved, four to eight septate and 30 to 35 × 3.5 to 5.7 μm. These are characteristics consistent with Fusarium incarnatum (3). Pathogenicity was confirmed by spraying a conidial suspension (1 × 106 conidia/ml) onto bruised branches of 1-year-old walnut plants (cv. Opex Dachaubaria) while sterile distilled water sprays were used for the controls. Inoculated plants were incubated at 20 ± 2°C and 85% relative humidity for 48 h. Fifty days following inoculation, branch dieback followed by canker symptoms developed on inoculated plants. Control plants remained healthy with no symptoms of canker. F. incarnatum (Roberge) Sacc. was repeatedly isolated from inoculated walnut plants, thus satisfying Koch's postulates. Infected plant material has been deposited at Herbarium Crytogamae Indiae Orientalis (ITCC-6874-07), New Delhi. To our knowledge, this is the first report of walnut canker caused by F. incarnatum (Roberge) Sacc. from India. This fungus was previously reported to be affecting walnut in Italy (1) and Argentina (4). References: (1) A. Belisario et al. Informatore Agrario 21:51, 1999. (2) J. C. Gilman. A Manual of Soil Fungi. The Iowa State University Press, Ames, 1959. (3) P. E. Nelson et al. Fusarium Species. An Illustrated Manual for Identification. The Pennsylvania State University Press, University Park, 1983. (4) S. Seta et al. Plant Pathol. 53:248, 2004.


Sign in / Sign up

Export Citation Format

Share Document