scholarly journals Effects of hydrogen peroxide application on agronomic traits of rice (Oryza sativa L.) under drought stress

2021 ◽  
Vol 67 (No. 4) ◽  
pp. 221-229
Author(s):  
Weeraphorn Jira-anunkul ◽  
Wattana Pattanagul

Drought stress is a major environmental factor limiting crop growth and productivity. Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) plays an essential role during stress response by acting as a signal molecule that activates multiple stress tolerance mechanisms. In this study, the effects of H<sub>2</sub>O<sub>2</sub> on agronomic traits were studied in rice (Oryza sativa L.) cv. Khao Dawk Mali 105 (KDML 105) was subjected to drought stress. H<sub>2</sub>O<sub>2</sub> was applied by either seed priming or foliar application method with a concentration of 1, 5, and 15 mmol/L. The results showed that both seed priming and foliar application with H<sub>2</sub>O<sub>2</sub> improved some yield components. The tiller numbers, number of panicles, number of filled grains, filled grain weight, and harvest index were improved approximately 1.13, 1.04, 1.23, 1.21, and 1.1 times compared to the untreated plants. Foliar application, however, helps the plant by reducing yield loss as indicated by a 0.5-time reduction in the number of unfilled grain and lower unfilled grain weight. It was suggested that 5 mmol/L H<sub>2</sub>O<sub>2</sub> was the most effective concentration to alleviate the effect of drought stress during the reproductive stage in rice.

2020 ◽  
Vol 48 (1) ◽  
pp. 273-283
Author(s):  
Weeraphorn JIRA-ANUNKUL ◽  
Wattana PATTANAGUL

Drought stress is a major factor limiting crop growth and yield. Hydrogen peroxide (H2O2) is known as a signalling molecule in the plant cell in which activates multiple physiological changes that play essential roles in tolerance mechanism. This study investigated the effects of seed priming with H2O2 on growth, some physiological characteristics and antioxidant enzyme activities in rice seedling under drought stress. Rice (Oryza sativa L.) cv. Khao Dawk Mali 105 seeds were primed with 0 (distilled water), 1, 5, 10, and 15 mM H2O2 and grown for 21 days. The seedlings were subjected to drought stress by withholding water for 7 days. The results showed that priming with low concentrations of H2O2 improved plant growth and biomass as well as relative water content, malondialdehyde content, electrolyte leakage. Priming with H2O2, however, had no beneficial effect on chlorophyll content, proline and leaf total soluble sugar. Seed priming with appropriate levels of H2O2 also enhanced antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX). It is concluded that seed priming with 2-10 mM H2O2, is beneficial for enhancing drought tolerance in rice seedling by increasing antioxidant capacity, which in turn reduces oxidative stress and damages to the cellular components.


Crop Research ◽  
2017 ◽  
Vol 52 (6) ◽  
pp. 195 ◽  
Author(s):  
Moazam Ghasemi ◽  
Noormohammadi Ghorban ◽  
Hamid Madani ◽  
Hamid-reza Mobasser ◽  
Mohammad-zaman Nouri

2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Asma Asma ◽  
Iqbal Hussain ◽  
Muhammad Yasin Ashraf ◽  
Muhammad Arslan Ashraf ◽  
Rizwan Rasheed ◽  
...  

2021 ◽  
Vol 681 (1) ◽  
pp. 012033
Author(s):  
G R Sadimantara ◽  
E Febrianti ◽  
LO Afa ◽  
S Leomo ◽  
Muhidin ◽  
...  

2021 ◽  
Vol 280 ◽  
pp. 109904
Author(s):  
Remi Chakma ◽  
Arindam Biswas ◽  
Pantamit Saekong ◽  
Hayat Ullah ◽  
Avishek Datta

2021 ◽  
Vol 131 ◽  
pp. 126382
Author(s):  
Jinwu Wang ◽  
Xiaobo Sun ◽  
Yanan Xu ◽  
Qi Wang ◽  
Han Tang ◽  
...  

2012 ◽  
Vol 39 (5) ◽  
pp. 402 ◽  
Author(s):  
Veeresh R. P. Gowda ◽  
Amelia Henry ◽  
Vincent Vadez ◽  
H. E. Shashidhar ◽  
Rachid Serraj

In addition to characterising root architecture, evaluating root water uptake ability is important for understanding drought response. A series of three lysimeter studies were conducted using the OryzaSNP panel, which consists of 20 diverse rice (Oryza sativa L.) genotypes. Large genotypic differences in drought response were observed in this genotype panel in terms of plant growth and water uptake. Total water uptake and daily water uptake rates in the drought-stress treatment were correlated with root length density, especially at depths below 30 cm. Patterns of water uptake among genotypes remained consistent throughout the stress treatments: genotypes that initially extracted more water were the same genotypes that extracted more water at the end of the study. These results suggest that response to drought by deep root growth, rather than a conservative soil water pattern, seems to be important for lowland rice. Genotypes in the O. sativa type aus group showed some of the greatest water uptake and root growth values. Since the OryzaSNP panel has been genotyped in detail with SNP markers, we expect that these results will be useful for understanding the genetics of rice root growth and function for water uptake in response to drought.


2017 ◽  
Vol 9 (4) ◽  
pp. 109-117 ◽  
Author(s):  
Budianti Kadidaa ◽  
Gusti Ray Sadimantar ◽  
Suaib . ◽  
La Ode Safuan ◽  
Muhidin .

Sign in / Sign up

Export Citation Format

Share Document