scholarly journals Susceptibility of Escherichia coli and Clostridium perfringens to sucrose monoesters of capric and lauric acid

2014 ◽  
Vol 59 (No. 8) ◽  
pp. 374-380
Author(s):  
E. Skřivanová ◽  
Š. Pražáková ◽  
O. Benada ◽  
P. Hovorková ◽  
MarounekM

The sucrose monoesters of capric and lauric acid were tested for their antibacterial activity towards two foodborne enteropathogenic bacteria &ndash; Escherichia coli (CCM 3954 &ndash; serotype O6 and E22 &ndash; serotype O103) and Clostridium perfringens (CNCTC 5459 and CIP 105178). Antibacterial activity was evaluated by the plating technique. Sucrose monocaprate significantly decreased the number of viable cells of E. coli at all tested concentrations (0.1&ndash;5 mg/ml). The overnight incubation of C. perfringens with the sucrose ester of lauric acid at 0.1&ndash;5 mg/ml reduced the number of viable cells below the detection limit (2 log<sub>10</sub> CFU/ml). Incubating E. coli CCM 3954 and C. perfringens CNCTC 5459 with monoesters (0.1 and 2 mg/ml) did not influence the K<sup>+</sup> permeability of the cytoplasmic membrane in cells during a 2.5-minute treatment. A 30-minute incubation of E. coli CCM 3954 and C. perfringens CNCTC 5459 with esters (0.1 and 2 mg/ml) revealed damage to cytoplasmic structures, as observed by transmission electron microscopy. &nbsp;

Author(s):  
S. DHANARAJ ◽  
S. S. M. UMAMAGESWARI ◽  
M. MALAVIKA ◽  
G. BHUVANESHWARI

Objective: To compare the antibacterial activity of honey against aerobic and anaerobic bacteria. Methods: Honey is extracted from the honey comb by trained persons. Antimicrobial activity of honey is performed by Agar Cup Diffusion technique for 3 bacteria Staphylococcus aureus, E. coli and Clostridium perfringens. Results: By performing the technique with proper guidance, it is observed that the Staphylococcus aureus specimen shows sensitivity to honey whereas the other two specimens Escherichia coli and clostridium perfringens doesn’t show any sensitivity to honey. Conclusion: Due to its vast antibacterial activity of honey, it can be used along with other antibiotics to increase its efficiency.


Author(s):  
K. G. DHANUSH ◽  
S. S. M. UMAMAGESWARI ◽  
M. MALAVIKA ◽  
G. BHUVANESHWARI

Objective: To compare the antibacterial activity of garlic against aerobic and anaerobic bacteria. Methods: Antimicrobial activity of garlic is performed by Agar cup diffusion technique for 3 bacteria Staphylococcus aureus, E. coli and clostridium perfringens. Results: By performing the technique with proper guidance, it is observed that the Staphylococcus aureus specimen shows sensitivity to garlic whereas the other two specimens Escherichia coli and clostridium perfringens doesn’t show any sensitivity to garlic. Conclusion: Due to its vast antibacterial activity of garlic, it can be used along with other antibiotics to increase its efficiency.


1998 ◽  
Vol 66 (6) ◽  
pp. 2434-2440 ◽  
Author(s):  
Daniel S. Chapple ◽  
David J. Mason ◽  
Christopher L. Joannou ◽  
Edward W. Odell ◽  
Vanya Gant ◽  
...  

ABSTRACT Lactoferricin includes an 11-amino-acid amphipathic alpha-helical region which is exhibited on the outer surface of the amino-terminal lobe of lactoferrin. Synthetic peptides homologous to this region exhibited potent antibacterial activity against a selected range of both gram-negative and gram-positive bacteria. An analog synthesized with methionine substituted for proline at position 26, which is predicted to disrupt the helical region, abolished antibacterial activity against Escherichia coli and considerably reduced antibacterial activity against Staphylococcus aureus and anAcinetobacter strain. The mode of action of human lactoferrin peptide (HLP) 2 against E. coli serotype O111 (NCTC 8007) was established by using flow cytometry, surface plasmon resonance, and transmission electron microscopy. Flow cytometry was used to monitor membrane potential, membrane integrity, and metabolic processes by using the fluorescent probes bis-1,3-(dibutylbarbituric acid)-trimethine oxonol, propidium iodide, and carbonyl cyanide m-chlorophenylhydrazone, respectively. HLP 2 was found to act at the cell membrane, causing complete loss of membrane potential after 10 min and of membrane integrity within 30 min, with irreversible damage to the cell as shown by rapid loss of viability. The number of particles, measured by light scatter on the flow cytometer, dropped significantly, showing that bacterial lysis resulted. The peptide was shown to bind toE. coli O111 lipopolysaccharide by using surface plasmon resonance. Transmission electron microscopy revealed bacterial distortion, with the outer membrane becoming detached from the inner cytoplasmic membrane. We conclude that HLP 2 causes membrane disruption of the outer membrane, resulting in lysis, and that structural considerations are important for antibacterial activity.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 366 ◽  
Author(s):  
Truong Vi ◽  
Selvaraj Kumar ◽  
Jong-Hwei Pang ◽  
Yu-Kuo Liu ◽  
Dave Chen ◽  
...  

In this study, the physicochemical and surface properties of the GO–Ag composite promote a synergistic antibacterial effect towards both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. Aureus) bacteria. GO–Ag NPs have a better bactericidal effect on E. coli (73%) and S. Aureus (98.5%) than pristine samples (pure Ag or GO). Transmission electron microscopy (TEM) confirms that the GO layers folded entire bacteria by attaching to the membrane through functional groups, while the Ag NPs penetrated the inner cell, thus damaging the cell membrane and leading to cell death. Cyclic voltammetry (CV) tests showed significant redox activity in GO–Ag NPs, enabling good catalytic performance towards H2O2 reduction. Strong reactive oxygen species (ROS) in GO–Ag NPs suggests that ROS might be associated with bactericidal activity. Therefore, the synergy between the physicochemical effect and ROS production of this material is proposed as the mechanism of its antibacterial activity.


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3790
Author(s):  
Pratama Jujur Wibawa ◽  
Muhammad Nur ◽  
Mukhammad Asy’ari ◽  
Wijanarka Wijanarka ◽  
Heru Susanto ◽  
...  

This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs–ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis’s spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).


1970 ◽  
Vol 1 (3) ◽  
pp. 311-318
Author(s):  
D. Friedberg ◽  
I. Friedberg ◽  
M. Shilo

Interaction of lysosomal fraction with Escherichia coli caused damage to the cell envelope of these intact cells and to the cytoplasmic membrane of E. coli spheroplasts. The damage to the cytoplasmic membrane was manifested in the release of 260-nm absorbing material and β-galactosidase from the spheroplasts, and by increased permeability of cryptic cells to O -nitrophenyl-β- d -galactopyranoside; damage to the cell wall was measured by release of alkaline phosphatase. Microscope observation showed morphological changes in the cell envelope.


2021 ◽  
Author(s):  
Amalanathan.M ◽  
Aravind.M ◽  
Sony Michael Mary.M ◽  
Razan A. Alshgari ◽  
Asma A. Alothman ◽  
...  

Abstract In this work, jasmine flower derived activated carbon were successfully synthesized by hydrothermal carbonization process at the different annealing temperature. The Crystallinity, phase, structural, morphological and optical properties of activated carbon were investigated using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), and UV-visible spectroscopy analysis. The graphitic phase of carbon was obtained from the XRD pattern. Surface morphology reveals irregular-shaped nanoparticles. The photodegradation of methylene blue (MB) was carried out under the visible light irradiation technique to study its photocatalytic activity. The activated carbon obtained at 400oC, 500oC and 600oC shows a photocatalytic degradation efficiency of 86%, 90%, and 94%, respectively. Antibacterial activity of activated carbon was examined against S. Aureus (MTCC-737) and E-Coli (MTCC- 443) microbial pathogens, and their potent antibacterial activity was examined from the zone of inhibition layer.


2018 ◽  
Vol 23 (5) ◽  
pp. 987-994
Author(s):  
Carlos Raphael Pedroso ◽  
Jeanette Beber de Souza ◽  
Thaís Kovalski ◽  
Carlos Magno de Sousa Vidal ◽  
Kelly Geronazzo Martins

RESUMO Esta pesquisa teve como objetivo avaliar o desempenho da radiação ultravioleta (UV) para a desinfecção de efluente final de estação de tratamento de esgoto (ETE) sanitário municipal, em escala de bancada de laboratório e operação em batelada. Foram analisadas as interferências dos parâmetros operacionais tempo de exposição (s) à radiação e altura de lâmina líquida (cm) do efluente no reator UV. A eficiência do processo de desinfecção foi avaliada empregando os microrganismos indicadores Clostridium perfringens (C. perfringens), colifagos, Escherichia coli (E. coli) e coliformes totais (CT). Após a desinfecção, foram avaliados os fenômenos de recuperação microbiológica fotorreativação e recuperação no escuro para E. coli e CT. Os resultados indicaram efetiva inativação dos microrganismos indicadores à radiação UV no decorrer do tempo de exposição, o que foi comprovado estatisticamente pela ANOVA de medidas repetidas. C. perfringens foi o microrganismo que apresentou a maior resistência à inativação. Nos ensaios de recuperação microbiológica, ambos os mecanismos foram considerados insignificantes, o que foi comprovado estatisticamente pelos testes t de Student (dados paramétricos) e Wilcoxon (dados não paramétricos). Em todas as análises, o nível de significância foi de 5%.


Sign in / Sign up

Export Citation Format

Share Document