scholarly journals Soil Properties and Growth of Maize as Affected by Slope Position and Fertilizer Type on Coastal Plain Sands

Author(s):  
Utin U. E ◽  
Essien G. E

A study was conducted to determine the effects of slope position and fertilizer type on soil properties and growth of maize (Zea mays) on Coastal Plain Sands of Akwa Ibom State, Nigeria. Results obtained showed that soils of lower slope (LS) had the highest contents of clay and silt compared with those of upper slope (US) position. Bulk density of the upper slope soil and that of the middle slope (MS) soils were significantly higher (P≤0.05) than that of LS soil and subsequently, total porosity and saturated hydraulic conductivity (Ksat) increased downslope. Bulk density of soils that received poultry manure (PM) and NPK+PM were significantly reduced compared to those of NPK and control while total porosity and Ksat of soils that received PM and NPK+PM were significantly higher (P≤0.05) than those of NPK and control. Soils of LS had highest pH, organic carbon, total nitrogen, available phosphorus, ECEC compared to those of MS and US. The application of poultry manure yielded increase in soil pH, soil organic carbon, total nitrogen, available phosphorus and ECEC when compared to soils of NPK and control. Growth of maize obtained with LS were consistently higher than those of the MS and US soils. Soils of LS that received NPK and NPK+PM had consistently similar maize growth, higher than other combinations of slope position and fertilizer type. The complementary application of poultry manure and NPK 15:15:15 can be the best option for increasing the fertility of soils with varying slope positions on Coastal Plain Sands.

Agro-Science ◽  
2021 ◽  
Vol 20 (2) ◽  
pp. 49-56
Author(s):  
A.O. Onunwa ◽  
C.J. Nwaiwu ◽  
J.E. Nwankwor ◽  
C.E. Emeh ◽  
C.O. Madueke ◽  
...  

Effects of four organic amendments on some soil physical and chemical properties were investigated in Awka, Anambra State in southeastern Nigeria. Over the years, use of synthetic materials in crop production has been a common practice globally. The attendant detrimental effects of the chemicals used in the formulation of these synthetics on animal and human health as well as the environment has made researchers to look out for a better agronomic practice that would not only improve productivity but at the same time sustain a healthy environment. Sole maize, sole cowpea and maize-cowpea intercrop (study area conventional practices) were planted using four soil organic amendments viz: cassava peel (CP), poultry manure (PM), pig waste (PW) and rice husk (RH) at the rate of 20 t ha–1 with the fifth as the control. The treatments were laid out in a 3 × 5 factorial in randomized complete block design and replicated four times. Data on the treatments’ effects on the selected soil physical properties (bulk density, total porosity, soil moisture) and chemical properties (soil pH, available phosphorus, cation exchange capacity (CEC), organic carbon, exchangeable bases and exchangeable acidity) were subjected to factorial analysis of variance using GenStat 2006 Edition. Results indicated that for sole maize, the amendments had significant effect onexchangeable Al3+and Na+; organic carbon, soil pH, available phosphorus and CEC but had no significant effect on Ca2+, H+, Mg2+ and K+ as compared to the control. For sole cowpea, compared to the plots with no amendment (control), all the chemical parameters analyzed differed significantly except organic carbon. Whereas, for maize-cowpea intercrop the treatments had no significant effect on Al3+, Na+, K+ and available phosphorus but differed significantly in exchangeable H+, Ca2+, Mg2+, organic carbon, soil pH, and CEC. There was a decrease in bulk density following the amendment. For sole maize, sole cowpea and maizecowpea intercrop; bulk density, total porosity and moisture content of the amended plots were significantly (p< 0.05) influenced. Organic amendments also significantly improved the growth and yield of maize and cowpea in both the sole and intercrop systems. Generally, poultry manure resulted in higher plant height,number of leaves and leaf area for maize; vine length, number of branches for cowpea as compared with other amendments. Hence, poultry manure was the most effective organic amendment in improving the soil physical and chemical properties as well as the growth and yield of cowpea and maize. Key words: Growth, maize-cowpea intercrop, soil physical and chemical properties, soil organic amendments


2021 ◽  
Author(s):  
Boguslaw Usowicz ◽  
Jerzy Lipiec

Abstract Saturated hydraulic conductivity (SHC) is a key property for evaluating soil water movement and quality. Most studies on spatial variability of SHC have been performed soil at a field or smaller scale. Therefore, the aim of this work was to assess (quantify) the spatial distribution of SHC at the commune scale and its relationship with other soil properties, including intrinsic sand, silt, and clay contents, relatively stable organic carbon, cation exchange capacity (CEC), dynamic water content (WC), total porosity (FI), and dry bulk density (BD) in the surface layer (0–20 cm). The spatial relationships were assessed using a semivariogram and a cross-semivariogram. The studied commune (140 km2) with predominantly permeable sandy soils with low fertility and productivity is located in the south-eastern part of Poland (Podlasie region). The mean sand and organic carbon contents are 74 andobablyctknąć, czy o to chodzid mniej znacznie mniejszed? ? 0.86 and their ranges (in %) are 45-95 and 0.002-3.75, respectively. The number of individual samples varied from 216–228 (for SHC, WC, BD, FI) to 691 for the other soil properties. The best fitting models were adjusted to the empirical semivariogram (exponential) and the cross-semivariogram (exponential, Gaussian, or linear) used to draw maps with kriging. The results showed that, among the soil properties studied, SHC was most variable (coefficient of variation 77.3%) and significantly (p <0.05) positively correlated with total porosity (r = 0.300) and negatively correlated with soil bulk density (r = –0.283). The mean SHC was 2.597 m day–1 and ranged from 0.01 up to 11.54 m day–1. The spatial autocorrelation (range) of SHC in the single (direct) semivariograms was 0.081° (8.1 km), while it favourably increased up to 0.149–0.81° (14.9–81 km) in the cross-semivariograms using the OC contents, textural fractions, and CEC as auxiliary variables. The generated spatial maps allowed outlining two sub-areas with predominantly high SHC above 3.0 m day–1 in the northern sandier (sand content >74%) and less silty (silt content <22%) part and, with lower SHC in the southern part of the commune. Generally, the spatial distribution of the SHC values in the commune area depended on the share of individual intrinsic textural fractions. On the other hand, the ranges of the spatial relationship between SHC and the intrinsic and relatively stable soil properties were much larger (from ~15 to 81 km) than between SHC and the dynamic soil properties (0.3-0.9 km). This knowledge is supportive for making decisions related to land management aimed at reduction of hydraulic conductivity and chemical leaching and improvement of soil water resources and crop productivity.


2021 ◽  
Author(s):  
Melaku Alene Retta ◽  
Hailu Kendie Addis ◽  
Tesfaye Feyisa Beyene

Abstract Background: The Ethiopian highlands are affected by soil loss caused by soil erosion resulted in soil properties deterioration. To reverse this, different soil and water conservation (SWC) measures were spatially practiced; however, the effect of SWC and slope gradient on soil properties is not studied well in the area. Hence, this study was conducted to evaluate the effects of SWC and slope gradient on selected soil physicochemical properties at Dawnt watershed, North-western Ethiopia. The treatments were a combination of four different SWC measures with three slope gradients replicated at three sites. Disturbed and undisturbed soil samples were collected from 0-20cm soil depth and physicochemical properties were determined following standard laboratory procedures. Results: The lab results depict that sand, bulk density, moisture, particle density, porosity, pH, organic carbon (OC), cation exchange capacity (CEC), total nitrogen, and available phosphorus were significantly (P<0.05) affected by SWC measures and slope gradient. High OC (2.44%), CEC (45cmol (+) kg-1), and moisture (19.55%) were obtained from Stone-Faced Soil Bund stabilized with Grass (SFSBG) and high available phosphorus (7.83ppm) from Soil Bund (SB) while lower bulk density (1.13gm/cm3) from SFSBG. Additionally, higher clay (41.67%) and moisture (19.81%) and lower bulk density (1.14g/cm3) were obtained from the lower slope. Higher pH (6.75) and OC (2.89%) were recorded at lower slope under SFSBG and lower pH and OC (6.03 and 1.02%) at the upper slope with non-conserved. Soil chemical properties, except available potassium, were increased down the slope.Conclusion: The interactions of slope position and SWC measures affect soil texture; pH, organic carbon, and available phosphorus but do not affect soil bulk density, moisture content, particle density, total porosity, cation exchange capacity, total nitrogen, and available potassium. In generally, the soil properties were improved through integrating conservation practices with multipurpose grass species across the study watershed. Therefore, in the study watershed and other similar agro-ecologies, farmers should use integrated SWC measures to avert the rainfall-driven soil nutrient loss.


2015 ◽  
Vol 12 (2) ◽  
pp. 34-38 ◽  
Author(s):  
Ashim Kumar Saha ◽  
Apu Biswas ◽  
Abdul Qayyum Khan ◽  
Md. Mohashin Farazi ◽  
Md. Habibur Rahman

Long-term tea cultivation has led to degradation of the soil. Old tea soils require rehabilitation for restoring soil health. Soil rehabilitation by growing different green crops can break the chain of monoculture of tea. An experiment was conducted at The Bangladesh Tea Research Institute (BTRI) Farm during 2008-2011 to find out the efficiency of different green crops on the improvement of soil properties. Four green crops such as Guatemala, Citronella, Mimosa and Calopogonium were grown to develop the nutritional value of the degraded tea soil. Soil samples were collected and analyzed before and at the end of experiment. Soil pH was increased in all four green crops treated plots with the highest increase in Citronella treated plots (from 4.1 to 4.5). Highest content of organic carbon (1.19%) and total nitrogen (0.119%) were found in Mimosa and Calopogonium treated plots, respectively. Concentration of available phosphorus, calcium and magnesium in all green crops treated plots were above the critical values, while available potassium content was above the critical value in Guatemala, Citronella and Mimosa treated plots. Changes in soil pH and available potassium were significant, while changes in organic carbon content, total nitrogen and available calcium were insignificant. Changes in available phosphorus and magnesium were significant. The Agriculturists 2014; 12(2) 34-38


2016 ◽  
Vol 13 (1) ◽  
pp. 59-68
Author(s):  
Roshan M. Bajracharya ◽  
Him Lal Shrestha ◽  
Ramesh Shakya ◽  
Bishal K. Sitaula

Land management regimes and forest types play an important role in the productivity and accumulation of terrestrial carbon pools. While it is commonly accepted that forests enhance carbon sequestration and conventional agriculture causes carbon depletion, the effects of agro-forestry are not well documented. This study investigated the carbon stocks in biomass and soil, along with the selected soil properties in agro-forestry plots compared to community forests (CF) and upland farms in Chitwan, Gorkha and Rasuwa districts of Central Nepal during the year 2012-2013. We determined the total above ground biomass carbon, soil organic carbon (SOC) stocks and soil properties (bulk density, organic carbon per cent, pH, total nitrogen (TN), available phosphorus (P), exchangeable potassium (K), and cation exchange capacity (CEC)) on samples taken from four replicates of 500 m2 plots each in community forests, agro-forestry systems and agricultural land. The soil was sampled in two increments at 0-15 cm and 15-30 cm depths and intact cores removed for bulk density and SOC determination, while loose samples were separately collected for the laboratory analysis of other soil properties. The mean SOC percent and corresponding soil carbon stocks to 30 cm depth were generally highest in CF (3.71 and 3.69 per cent, and 74.98 and 76.24 t ha-1, respectively), followed by leasehold forest (LHF) (2.26 and 1.13 per cent and 40.72 and 21.34 t ha-1, respectively) and least in the agricultural land (3.05 and 1.09 per cent, and 63.54 and 19.42 t ha-1, respectively). This trend was not, however, observed in Chitwan, where agriculture (AG) had the highest SOC content (1.98 per cent) and soil carbon stocks (42.5 t ha-1), followed by CF (1.8 per cent and 41.2 t ha-1) and leasehold forests (1.56 per cent and 35.3 t ha-1) although the differences were not statistically significant. Other soil properties were not significantly different among land use types with the exceptions of pH, total N, available P and CEC in the Chitwan plots. Typically, SOC and soil carbon stocks (to 30cm depth) were positively correlated with each other and with TN and CEC. The AGB-C was expectantly highest in Rasuwa district CF (ranging from 107.3 to 260.3 t ha-1) due to dense growth and cool climate, followed by Gorkha (3.1 to 118.4 t ha-1), and least in Chitwan (17.6 to 95.2 t ha-1). The highest C stocks for agro-forestry systems in both above ground and soil were observed in Rasuwa, followed by Chitwan district. Besides forests, agro-forestry systems also hold good potential to store and accumulate carbon, hence they have scope for contributing to climate change mitigation and adaptation with co-benefits.Journal of Forest and Livelihood 13(1) May, 2015, page: 56-68


SOIL ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 179-194
Author(s):  
José A. Gómez ◽  
Gema Guzmán ◽  
Arsenio Toloza ◽  
Christian Resch ◽  
Roberto García-Ruíz ◽  
...  

Abstract. This study compares the distribution of bulk soil organic carbon (SOC), its fractions (unprotected and physically, chemically, and biochemically protected), available phosphorus (Pavail), organic nitrogen (Norg), and stable isotope (δ15N and δ13C) signatures at four soil depths (0–10, 10–20, 20–30, and 30–40 cm) between a nearby open forest reference area and a historical olive orchard (established in 1856) located in southern Spain. In addition, these soil properties, as well as water stable aggregates (Wsagg), were contrasted at eroding and deposition areas within the olive orchard, previously determined using 137Cs. SOC stock in the olive orchard (about 40 t C ha−1) was only 25 % of that in the forested area (about 160 t C ha−1) in the upper 40 cm of soil, and the reduction was especially severe in the unprotected organic carbon. The reference and the orchard soils also showed significant differences in the δ13C and δ15N signals, likely due to the different vegetation composition and N dynamics in both areas. Soil properties along a catena, from erosion to deposition areas within the old olive orchard, showed large differences. Soil Corg, Pavail and Norg content, and δ15N at the deposition were significantly higher than those of the erosion area, defining two distinct areas with a different soil quality status. These overall results indicate that the proper understanding of Corg content and soil quality in olive orchards requires the consideration of the spatial variability induced by erosion–deposition processes for a convenient appraisal at the farm scale.


2020 ◽  
pp. 1-10
Author(s):  
Iroegbu, Chidinma S ◽  
Asawalam, Damian O ◽  
O. A. Dada ◽  
J. E. Orji

Aim: To determine the effect of different rates of sawdust (SD) and poultry manure (PM) applied on some soil physical properties of acid sandy Ultisol, and some growth parameters and yield of cocoyam. Study Design: 2 x 5 factorial arrangement in a randomized complete block design replicated three times.  Place and Duration of Study: The experiment was conducted in Eastern farm of Michael Okpara University of Agriculture, Umudike during 2014 and 2015 planting seasons. Methodology: The treatments comprised of two manure sources at five levels each: sawdust (0, 2, 10, 15 and 20t/ha) and poultry manure (0, 2, 4, 6 and 8t/ha). The treatments were assigned randomly to the plots and incorporated into the soil two weeks before planting. Data were collected on plant height, number of leaves, leaf area, corms, cormels and total yield. Soil samples were collected with core samplers for physical properties such as Soil Bulk density and Total Porosity. All the data collected were subjected to ANOVA for factorial experiment in RCBD at 5% probability level. Results: The result showed that the interactions of poultry manure and sawdust significantly (p<0.05) improved soil bulk density and total porosity with the lowest value obtained with 0t/ha SD + 8t/ha PM in both 2014 and 2015. The result showed that the interactions of poultry manure and sawdust significantly (p<0.05) increased the leaf area with the highest value obtained with 20t/ha SD + 8t/ha PM in both 2014 and 2015. Also, only the increasing rates of treatment applied significantly (p<0.05) increased the number of leaves, plant height, leaf area and cocoyam yield with the highest value obtained with 20t/ha SD + 8t/ha PM. Also, the various rates of treatment application significantly (p<0.05) increased the cocoyam yield (weight of corms and cormels) with the highest value obtained with 20t/ha SD + 8t/ha PM. Conclusion: Improvement in growth and yield of cocoyam resulted from the improved nutrient status of the soil as a result of the amendments applied.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Boguslaw Usowicz ◽  
Jerzy Lipiec

AbstractSaturated hydraulic conductivity (K) is a key property for evaluating soil water movement and quality. Most studies on spatial variability of K have been performed soil at a field or smaller scale. Therefore, the aim of this work was to assess (quantify) the spatial distribution of K at the larger regional scale in south-eastern Poland and its relationship with other soil properties, including intrinsic sand, silt, and clay contents, relatively stable organic carbon, cation exchange capacity (CEC) and temporally variable water content (WC), total porosity (FI), and dry bulk density (BD) in the surface layer (0–20 cm). The spatial relationships were assessed using a semivariogram and a cross-semivariogram. The studied region (140 km2) with predominantly permeable sandy soils with low fertility and productivity is located in the south-eastern part of Poland (Podlasie region). The mean sand and organic carbon contents are 74 and 0.86 and their ranges (in %) are 45–95 and 0.002–3.75, respectively. The number of individual samples varied from 216 to 228 (for K, WC, BD, FI) to 691 for the other soil properties. The best fitting models were adjusted to the empirical semivariogram (exponential) and the cross-semivariogram (exponential, Gaussian, or linear) used to draw maps with kriging. The results showed that, among the soil properties studied, K was most variable (coefficient of variation 77.3%) and significantly (p < 0.05) positively correlated with total porosity (r = 0.300) and negatively correlated with soil bulk density (r = – 0.283). The normal or close to the normal distribution was obtained by natural logarithmic and root square transformations. The mean K was 2.597 m day−1 and ranged from 0.01 up to 11.54 m day−1. The spatial autocorrelation (range) of K in the single (direct) semivariograms was 0.081° (8.1 km), while it favourably increased up to 0.149°–0.81° (14.9–81 km) in the cross-semivariograms using the OC contents, textural fractions, and CEC as auxiliary variables. The generated spatial maps allowed outlining two sub-areas with predominantly high K above 3.0 m day−1 in the northern sandier (sand content > 74%) and less silty (silt content < 22%) part and, with lower K in the southern part of the study region. Generally, the spatial distribution of the K values in the study region depended on the share of individual intrinsic textural fractions. On the other hand, the ranges of the spatial relationship between K and the intrinsic and relatively stable soil properties were much larger (from ~ 15 to 81 km) than between K and the temporally variable soil properties (0.3–0.9 km). This knowledge is supportive for making decisions related to land management aimed at alteration of hydraulic conductivity to improve soil water resources and crop productivity and reduce chemical leaching.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 987
Author(s):  
Xiaoai Yin ◽  
Longshan Zhao ◽  
Qian Fang ◽  
Guijie Ding

With increasing age, plants will cause changes in soil physicochemical properties. The objective of this study was to investigate differences in the soil physicochemical properties in different-aged Masson pine forest plantations (i.e., 10, 20, 40, and 60 years old). Soil samples were collected in a pure Masson pine forest plantation in Southwest China. The soil determination indexes included organic carbon, nitrogen, phosphorus and potassium contents, water content, bulk density, and pH. The soil pH of a 20-year-old forest was significantly (p < 0.05) higher than that of a 10, 40, and 60-year-old forest. In addition, soil-available phosphorus in a 60-year-old forest was significantly (p < 0.05) higher than that in the other three age forest groups. With increasing forest age, available phosphorus increased, while available nitrogen decreased at 20 years old and then increased at 40 years old. There was a significant positive correlation (p < 0.05) between total nitrogen and available potassium; no significant correlation (p> 0.05) between total phosphorus and total potassium, organic carbon, bulk density, and pH; and a significant negative correlation (p < 0.05) between available phosphorus and the water content. The availability and utilization efficiency of soil nutrients in young forests were higher than those in old forests and the intermediate forest age was an important time point that affected the soil properties. To improve the availability of soil nutrients and ensure the sustainable utilization of soil resources, it is necessary to increase the input of nitrogen and especially phosphorus. More attention should be given to the phytochemometric response with respect to the age of plantations.


2020 ◽  
Vol 3 (2) ◽  
pp. 353-365
Author(s):  
Babita Neupane ◽  
Krishna Aryal ◽  
Lal Bahadur Chhetri ◽  
Shishir Regmi

This experiment was conducted in the farmer’s field at Khajrauta, Gadhawa-4, Dang, Nepal to evaluate the effect of integrated nutrient management on growth and yield of cauliflower as well as their residual effects on soil properties. The cauliflower variety silvercup-60 was grown under eight different treatments; T1: 50% N through RDF + 50% N through FYM; T2: 50% N through RDF + 50% N through PM; T3: 50% N through RDF + 50% N through VC, T4: 50% N through RDF + 25% N through FYM + 25% N through PM; T5: 50% N through RDF + 25% N through VC + 25% N through PM; T6: 50% N through RDF + 25% N through VC + 25% N through FYM; T7: 50% N through RDF + 25% N through  VC +25% N through FYM; T8: 50% N through RDF + 50% N  through FYM,VC and poultry manure. The experiment was laid out in RCB design with three replications. The result revealed that the  highest plant height (36.40 cm), number of leaves (15), plant spread (31.72 cm), leaf area (526.5 cm2), curd weight (207.3g) and curd yield (12.85 t/ha) were found under 50% N through RDF +50% N through VC. The root length, root diameter and root density were better under all INM treatments as compared to 100% N through RDF. INM treatments showed lesser bulk density, lesser particle density, greater infiltration rate and greater organic matter content than application of 100% N through RDF. Soil total nitrogen was increased in all INM treatments while soil available phosphorus decreases in all treatments except 100% N trough RDF and 50% N through RDF +50% N through PM. Thus, farmers are suggested to apply 50% N through VC along with 50% N through RDF to increase cauliflower yield.   


Sign in / Sign up

Export Citation Format

Share Document