scholarly journals Combined effects of chemical fertilization and microbial inoculant on nutrient use efficiency and soil quality indicators

2020 ◽  
Vol 11 (3) ◽  
pp. 375-380
Author(s):  
Jimena Angulo ◽  
María Martínez-Salgado ◽  
Rodrigo Ortega-Blu ◽  
Paola Fincheira
2021 ◽  
Vol 11 (14) ◽  
pp. 6502
Author(s):  
Addi Santiago Cruz-Méndez ◽  
Esaú Ortega-Ramírez ◽  
Carlos Alexander Lucho-Constantino ◽  
Oscar Arce-Cervantes ◽  
Gabriela Alejandra Vázquez-Rodríguez ◽  
...  

Alkaline soils with low buffering capacity are susceptible to amendments such as biochar or biofertilizers, which could drastically alter their pH. For that, this study aimed to evaluate the effectiveness of a low biochar and biofertilizer addition to improve soil characteristics and the use of nutrients to reduce the doses of chemical fertilizer. For that, we measured the initial effect of biochar addition on the soil characteristics. Then, to evaluate the changes produced by biochar and biofertilizer on cultivated soil, we carried out a greenhouse experiment with Physalis ixocarpa for two crop cycles. We also studied the nutrient use efficiency, comparing chemical fertilization at 100% (without biochar) against 50% and 20% with biochar on crop yield, plant height, fruit weight, and root length. Finally, we compared the combination of biochar and biofertilizer with the treatments mentioned earlier. The results showed that after adding 0.2% of bamboo biochar, bulk density (BD) decreased while CEC, as well as OM, Pav, Fe, and Cu contents, increased in the soil. The combination of biochar and biofertilizer improved WHC, Pav, and OM comparing to the soil added with biochar. We found that the bamboo biochar and nopal-based fertilizer are suitable improvers for the studied soil.


2020 ◽  
Vol 8 (6) ◽  
pp. 854 ◽  
Author(s):  
Amelia Tang ◽  
Ahmed Osumanu Haruna ◽  
Nik Muhamad Ab. Majid ◽  
Mohamadu Boyie Jalloh

Plant growth-promoting rhizobacteria (PGPR), which include isolates from genera Paraburkholderia, Burkholderia and Serratia, have received attention due to their numerous plant growth-promoting mechanisms such as their ability to solubilize insoluble phosphates and nitrogen-fixation. However, there is a dearth of information on the potential plant growth-promoting effects of these three groups of bacteria on non-legumes such as maize. This study determined the influences of the aforementioned strains on soil properties, maize growth, nutrient uptake and nutrient use efficiency. A pot trial using maize as a test crop was done using a randomized complete block design with 7 treatments each replicated 7 times. The treatments used in this study were: Control (no fertilizer), chemical fertilizer (CF), organic-chemical fertilizers combination without inoculum (OCF) and with inocula consisting of single strains [cellulolytic bacteria (TC), organic fertilizer and chemical fertilizer with N-fixing bacteria (TN), organic fertilizer and chemical fertilizer with P-solubilizing bacteria (TP)) and three-strain inocula (TCNP), respectively. The variables measured included plant growth and nutrient content, soil nutrient content and functional rhizospheric bacterial populations. Paraburkholderia nodosa NB1 and Burkholderia cepacia PB3 showed comparable effects on maize biomass and also improved N and P use efficiencies when compared to full chemical fertilization. Nitrogen-fixing rhizobacteria had a positive effect on above-ground biomass of maize. Paraburkholderia nodosa NB1 improved soil total C and organic matter contents, besides being the only bacterial treatment that improved K use efficiency compared to OCF. The results suggest that P. nodosa NB1 and B. cepacia PB3 have potential usage in bio-fertilizers. In contrast, treatments with Serratia nematodiphila C46d and consortium strains showed poorer maize nutrient uptake and use efficiency than the other single strain treatments. Bacterial treatments generally showed comparable or higher overall N and P use efficiencies than full chemical fertilization. These findings suggest that at least half the amounts of N and P fertilizers could be reduced through the use of combined fertilization together with beneficial bacteria.


2020 ◽  
Vol 26 (2) ◽  
Author(s):  
Kavita Choudhary ◽  
Dayanand Dayanand ◽  
Preeti Mishra

The experiments were conducted to determine effects of farming practises on soil quality of fields. Comparative analyses of soil samples from organic and conventional farms were carried out for soil organic matter nitrogen, phosphorus, potassium, salinity, and soil pH. Applications of organic manures increase the availability of organic elements in soil naturally and improve the Nutrient Use Efficiency (NUE) of crops. Standard chemical analytical methods were used to determine organic matter, EC, pH, in soil. Special attention was paid to phosphorus, nitrogen and potassium. Soil profile analysis showed that organic farming gradually enhances soil quality naturally. Results indicated increasing levels of organic carbon, total nitrogen, phosphorus, potassium, CEC, pH of soil from farms practising organic farming.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

Tomato is in high demand because of its taste and health benefits. In Florida, tomato is the number one vegetable crop in terms of both acreage and value. Because of its high value and wide acreage, it is important for tomato production to be efficient in its water and nutrient use, which may be improved through fertigation practices. Therefore, the objective of this new 7-page article is to disseminate research-based methods of tomato production utilizing fertigation to enhance yield and nutrient use efficiency. Written by Mary Dixon and Guodong Liu, and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1392


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


2015 ◽  
Vol 27 (3) ◽  
pp. 219-232
Author(s):  
Antônio W. O. Rocha Junior ◽  
Guilherme A. H. A. Loureiro ◽  
Quintino R. Araujo ◽  
George A. Sodré ◽  
Arlicélio Q. Paiva ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Melku Dagnachew ◽  
Awdenegest Moges ◽  
Asfaw Kebede ◽  
Adane Abebe

Land degradation is a global negative environmental process that causes the decline in the productivity of land resources’ capacity to perform their functions. Though soil and water conservation (SWC) technologies have been adopted in Geshy subcatchment, their effects on soil quality were limitedly studied. The study was conducted to evaluate the effects SWC measures on soil quality indicators in Geshy subcatchment, Gojeb River Catchment, Ethiopia. A total of 54 soil samples (two treatments–farmlands with and without SWC measures ∗ three slope classes ∗ three terrace positions ∗ three replications) were collected at a depth of 20 cm. Statistical differences in soil quality indicators were analyzed using multivariate analysis of variance (ANOVA) following the general linear model procedure of SPSS Version 20.0 for Windows. Means that exhibited significant differences were compared using Tukey’s honest significance difference at 5% probability level. The studied soils are characterized by low bulk density, slightly acidic with clay and clay loam texture. The results revealed that farmlands with SWC measures had significantly improved soil physical (silt and clay fractions, and volumetric soil water content (VSWC)) and chemical (pH, SOC, TN, C : N ratio, and Av. phosphorus) quality indicators as compared with farmlands without SWC measures. The significantly higher VSWC, clay, SOC, TN, C : N ratio, and Av. P at the bottom slope classes and terrace positions could be attributed to the erosion reduction and deposition effects of SWC measures. Generally, the status of the studied soils is low in SOC contents, TN, C : N ratio, and Av. P (deficient). Thus, integral use of both physical and biological SWC options and agronomic interventions would have paramount importance in improving soil quality for better agricultural production and productivity.


2021 ◽  
Vol 192 ◽  
pp. 103181
Author(s):  
Jagadish Timsina ◽  
Sudarshan Dutta ◽  
Krishna Prasad Devkota ◽  
Somsubhra Chakraborty ◽  
Ram Krishna Neupane ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 959
Author(s):  
Arshad Jalal ◽  
Fernando Shintate Galindo ◽  
Eduardo Henrique Marcandalli Boleta ◽  
Carlos Eduardo da Silva Oliveira ◽  
André Rodrigues dos Reis ◽  
...  

Enrichment of staple food with zinc (Zn) along with solubilizing bacteria is a sustainable and practical approach to overcome Zn malnutrition in human beings by improving plant nutrition, nutrient use efficiency, and productivity. Common bean (Phaseolus vulgaris L.) is one of a staple food of global population and has a prospective role in agronomic Zn biofortification. In this context, we evaluated the effect of diazotrophic bacterial co-inoculations (No inoculation, Rhizobium tropici, R. tropici + Azospirillum brasilense, R. tropici + Bacillus subtilis, R. tropici + Pseudomonas fluorescens, R. tropici + A. brasilense + B. subtilis, and R. tropici + A. brasilense + P. fluorescens) in association with soil Zn application (without and with 8 kg Zn ha−1) on Zn nutrition, growth, yield, and Zn use efficiencies in common bean in the 2019 and 2020 crop seasons. Soil Zn application in combination with R. tropici + B. subtilis improved Zn accumulation in shoot and grains with greater shoot dry matter, grain yield, and estimated Zn intake. Zinc use efficiency, recovery, and utilization were also increased with co-inoculation of R. tropici + B. subtilis, whereas agro-physiological efficiency was increased with triple co-inoculation of R. tropici + A. brasilense + P. fluorescens. Therefore, co-inoculation of R. tropici + B. subtilis in association with Zn application is recommended for biofortification and higher Zn use efficiencies in common bean in the tropical savannah of Brazil.


Sign in / Sign up

Export Citation Format

Share Document