scholarly journals Doppler Sonography Characteristics of Vertebrobasilar Circulation In Patients With Parkinson’s Disease

2008 ◽  
Vol 8 (3) ◽  
pp. 251-253
Author(s):  
Mirjana Vidović ◽  
Osman Sinanović ◽  
Dževdet Smajlović ◽  
Adnan Burina ◽  
Josip Hudić

The objective of the study was to analyze the doppler sonography findings of vertebrobasilar circulation (VB) in patients with Parkinson’s disease. 40 patients were analyzed (25 men’s and 15 women) with Parkinson’s disease, average age was 61,9 years (SD=11,43), treated at the Clinic for Neurology in Tuzla. Device for doppler sonography was Multidop x 4. Doppler sonography findings of VB circulation were analyzed in order to computerized tomography (CT) findings of the brain (with or without ischemic lacunar lesions) and in order to presence of postural disturbances as one of dominant Parkinson’s disease symptoms during actual hospitalization. Our results suggest that vertebrobasilar insufficiency is more frequent in patients with Parkinson’s disease (no matter of type) and postural disturbances as a dominant symptom comparing to group of Parkinson’s disease patients without postural disturbances. These results implicate the importance of doppler sonography findings of vertebrobasilar circulation in patients with Parkinson’s disease and possibility of considering role of vertebrobasilar insufficiency in development of postural disturbances.

2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


NeuroImage ◽  
2019 ◽  
Vol 190 ◽  
pp. 79-93 ◽  
Author(s):  
David Meder ◽  
Damian Marc Herz ◽  
James Benedict Rowe ◽  
Stéphane Lehéricy ◽  
Hartwig Roman Siebner

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Valentina Vellani ◽  
Lianne P de Vries ◽  
Anne Gaule ◽  
Tali Sharot

Humans are motivated to seek information from their environment. How the brain motivates this behavior is unknown. One speculation is that the brain employs neuromodulatory systems implicated in primary reward-seeking, in particular dopamine, to instruct information-seeking. However, there has been no causal test for the role of dopamine in information-seeking. Here, we show that administration of a drug that enhances dopamine function (dihydroxy-L-phenylalanine; L-DOPA) reduces the impact of valence on information-seeking. Specifically, while participants under Placebo sought more information about potential gains than losses, under L-DOPA this difference was not observed. The results provide new insight into the neurobiology of information-seeking and generates the prediction that abnormal dopaminergic function (such as in Parkinson’s disease) will result in valence-dependent changes to information-seeking.


2019 ◽  
Vol 20 (22) ◽  
pp. 5649 ◽  
Author(s):  
Suh Yee Goh ◽  
Yin Xia Chao ◽  
Shaikali Thameem Dheen ◽  
Eng-King Tan ◽  
Samuel Sam-Wah Tay

Parkinson’s disease (PD) is a disabling neurodegenerative disease that manifests with resting tremor, bradykinesia, rigidity and postural instability. Since the discovery of microRNAs (miRNAs) in 1993, miRNAs have been shown to be important biological molecules involved in diverse processes to maintain normal cellular functions. Over the past decade, many studies have reported dysregulation of miRNA expressions in PD. Here, we identified 15 miRNAs from 34 reported screening studies that demonstrated dysregulation in the brain and/or neuronal models, cerebrospinal fluid (CSF) and blood. Specific miRNAs-of-interest that have been implicated in PD pathogenesis include miR-30, miR-29, let-7, miR-485 and miR-26. However, there are several challenges and limitations in drawing definitive conclusions due to the small sample size in clinical studies, varied laboratory techniques and methodologies and their incomplete penetrance of the blood–brain barrier. Developing an optimal delivery system and unravelling druggable targets of miRNAs in both experimental and human models and clinical validation of the results may pave way for novel therapeutics in PD.


2014 ◽  
Vol 42 (2) ◽  
pp. 600-604 ◽  
Author(s):  
M. Angela Cenci

PD (Parkinson's disease) is characterized by some typical motor features that are caused by striatal dopamine depletion and respond well to dopamine-replacement therapy with L-dopa. Unfortunately, the majority of PD patients treated with L-dopa develop abnormal involuntary movements (dyskinesias) within a few years. The mechanisms underlying the development of LIDs (L-dopa-induced dyskinesias) involve, on one hand, a presynaptic dysregulation of dopamine release and clearance and, on the other hand, an abnormal postsynaptic response to dopamine in the brain. There is a large amount of evidence that these dopamine-dependent mechanisms are modulated by glutamatergic pathways and glutamate receptors. The present article summarizes the pathophysiological role of glutamatergic pathways in LID and reviews pre-clinical and clinical results obtained using pharmacological modulators of different classes and subtypes of glutamate receptors to treat parkinsonian dyskinesias.


2022 ◽  
Author(s):  
Min Hyung Seo ◽  
Sujung Yeo

Abstract Parkinson’s disease (PD) is known as the second most common neurodegenerative disease, which is caused by destruction of dopaminergic neurons in the substantia nigra (SN) of the brain; however, the reason for the death of dopaminergic neurons remains unclear. An increase in α-synuclein (α-syn) is considered an important factor in the pathogenesis of PD. In the current study, we investigated the association between PD and serine/arginine-rich protein specific kinase 3 (Srpk3) in MPTP-induced parkinsonism mice model and in SH-SY5Y cells treated with MPP+. Srpk3 expression was significantly downregulated, while tyrosine hydroxylase (TH) decreased and α-synuclein (α-syn) increased after 4 weeks of MPTP intoxication treatment. Dopaminergic cell reduction and α-syn increase were demonstrated by inhibiting Srpk3 expression by siRNA in SH-SY5Y cells. Moreover, a decrease in Srpk3 expression upon siRNA treatment promoted dopaminergic cell reduction and α-syn increase in SH-SY5Y cells treated with MPP+. These results suggest that the decrease in Srpk3 expression due to Srpk3 siRNA caused both a decrease in TH and an increase in α-syn. This raises new possibilities for studying how Srpk3 controls dopaminergic cells and α-syn expression, which may be related to the pathogenesis of PD. Our results provide an avenue for understanding the role of Srpk3 during dopaminergic cell loss and α-syn increase in the SN. Furthermore, this study could support a therapeutic possibility for PD in that the maintenance of Srpk3 expression inhibited dopaminergic cell reduction.


2014 ◽  
Vol 56 ◽  
pp. 125-135 ◽  
Author(s):  
Shun Yu ◽  
Piu Chan

α-Syn (α-synuclein) is a small soluble acidic protein that is extensively expressed in the nervous system. Genetic, clinical and experimental studies demonstrate that α-syn is strongly implicated in the pathogenesis of PD (Parkinson's disease). However, the pathogenic mechanism remains elusive. In the present chapter, we first describe the normal expression and potential physiological functions of α-syn. Then, we introduce recent research progress related to the pathogenic role of α-syn in PD, with special emphasis on how α-syn oligomers cause the preferential degeneration of dopaminergic neurons in the substantia nigra and the spreading of α-syn pathology in the brain of PD patients.


2020 ◽  
Vol 19 (3) ◽  
pp. 195-206
Author(s):  
Andrew Schneider ◽  
Adam T. Sari ◽  
Hasan Alhaddad ◽  
Youssef Sari

Parkinson’s Disease (PD) is a neurodegenerative disease involving degeneration of dopaminergic neurons of the nigrostriatal pathways. Over the past decades, most of the medications for the treatment of PD patients have been used to modulate dopamine concentrations in the basal ganglia. This includes levodopa and its inhibitory metabolizing enzymes. In addition to modulating dopamine concentrations in the brain, there are D2-like dopamine receptor agonists that mimic the action of dopamine to compensate for the deficit in dopamine found in PD patients. Muscarinic antagonists’ drugs are used rarely due to some side effects. Monoamine oxidase inhibitors are among the first in line, and are considered popular drugs that reduce the metabolism of dopamine in PD patients. Furthermore, we discussed in this review the existence of certain glutamate receptor antagonists for the treatment of PD. Alternatively, we further discussed the potential therapeutic role of adenosine (2A) receptor antagonists, such as tozadenant and istradefylline in the treatment of PD. We also discussed the important role of serotonin1A receptor agonist, adrenergic autoreceptors (α2) antagonists and calcium channel blockers in the treatment of PD. Finally, neurotrophic factors, such as glial cell line-derived neurotrophic growth factor and brain-derived neurotrophic factor are considered the primary factors for neuroprotection in PD.


2015 ◽  
Vol 20 (7) ◽  
pp. 824-837 ◽  
Author(s):  
Gerardo Leyva-Gómez ◽  
Hernán Cortés ◽  
Jonathan J. Magaña ◽  
Norberto Leyva-García ◽  
David Quintanar-Guerrero ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Anna Masato ◽  
Michele Sandre ◽  
Angelo Antonini ◽  
Luigi Bubacco

Parkinson’s disease (PD) is a clinically heterogeneous disorder with a multi-factorial pathology. Various molecular mechanisms are involved in the pathogenesis of PD, converging to oxidative stress and proteinopathy. The accumulation of reactive aldehydes (i.e., the dopamine metabolite DOPAL, lipid-peroxidation products, and advanced glycation end-products) has been reported in PD patients’ brains. Aldehydes easily react with primary amines such as lysine residues, which are involved in several regulatory processes in cells. Therefore, aldehyde adducts lead to severe consequences, including neuronal proteostasis, mitochondrial dysfunction, and cell death. In this review, we analyzed the scavenging role of amines toward toxic aldehydes in the brain. Interestingly, small molecules like metformin, rasagiline, hydralazine are already clinically available and used in the therapy for PD and other diseases. Hence, we propose to reevaluate this class of drugs as a disease-modifiers for PD, and we suggest that improved analysis of their pharmacology and bioavailability in the brain, together with a more precise patients stratification, should be considered before planning future clinical trials.


Sign in / Sign up

Export Citation Format

Share Document