scholarly journals Thermodynamic study of manganese tellurides by the electromotive force method

Author(s):  
Elnur N. Orujlu ◽  
Ziya S. Aliev ◽  
Yasin I. Jafarov ◽  
Eldar I. Ahmadov ◽  
Mahammad B. Babanly

The thermodynamic properties of manganese tellurides were determined using an electromotive force (EMF) method with a liquid electrolyte in a temperature range from 300 to 450 K. EMF measurements were performed using equilibrium samples taken from the two-phase regions, namely MnTe2 + Te and MnTe + MnTe2, of the Mn–Te system. The phase compositions of all samples were controlled with the X-ray diffraction (XRD) method. The partial molar functions of manganese in alloys, as well as the standard thermodynamic functions of the formation and standard entropies of MnTe and MnTe2, were calculated. A comparative analysis of obtained results with literature data is performed

2021 ◽  
Vol 22 (3) ◽  
pp. 420-425
Author(s):  
Samira Imamaliyeva

The alloys of the Gd-Te system in the range of compositions > 75 at% Te were studied by the methods of X-ray diffraction (XRD) and electromotive forces (EMF). From the EMF measurements of the concentration cells relative to the GdTe electrode in the 300-450 K temperature range, the partial thermodynamic functions of GdTe in alloys were determined. By combining these data with the corresponding functions of Gd in GdTe, the partial molar functions of gadolinium in GdTe3+Te alloys, and standard thermodynamic functions of formation and standard entropy of the GdTe3 compound were calculated. The obtained results were compared with the literature data.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Valentina Krylova ◽  
Mindaugas Andrulevičius

Copper sulfide layers were formed on polyamide PA 6 surface using the sorption-diffusion method. Polymer samples were immersed for 4 and 5 h in 0.15 mol⋅  solutions and acidified with HCl (0.1 mol⋅) at . After washing and drying, the samples were treated with Cu(I) salt solution. The samples were studied by UV/VIS, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods. All methods confirmed that on the surface of the polyamide film a layer of copper sulfide was formed. The copper sulfide layers are indirect band-gap semiconductors. The values of are 1.25 and 1.3 eV for 4 h and 5 h sulfured PA 6 respectively. Copper XPS spectra analyses showed Cu(I) bonds only in deeper layers of the formed film, while in sulfur XPS S 2p spectra dominating sulfide bonds were found after cleaning the surface with ions. It has been established by the XRD method that, beside , the layer contains as well. For PA 6 initially sulfured 4 h, grain size forchalcocite, , was  nm and fordjurleite, , it was 54.17 nm. The sheet resistance of the obtained layer varies from 6300 to 102 .


2014 ◽  
Vol 975 ◽  
pp. 207-212
Author(s):  
Dayse I. dos Santos ◽  
Olayr Modesto Jr. ◽  
Luis Vicente A. Scalvi ◽  
Americo S. Tabata

Metal oxide nanocomposites were prepared by two different routes: polyol and sol-gel. Characterization by X ray diffraction showed that the first process produces directly a two-phase material, while the sol-gel powder never showed second phase below 600°C. Light spectroscopy of the treated powders indicated similarities for the processed materials. Although the overall material compositions are about the same, different structural characteristics are found for each processing. With the exception of Ti-Zn materials, all the double metal oxide powders showed higher absorbance than either TiO2 powder.


2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


Author(s):  
Peng Liu ◽  
Hongbin Zhang ◽  
Sinong Wang ◽  
Hui Yu ◽  
Bingjie Lu ◽  
...  

AbstractThe crystallinity indices (CrI) of Chinese handmade papers were investigated using the X-ray diffraction (XRD) method. Four Chinese handmade papers, Yingchun, Zhuma, Yuanshu and Longxucao papers were used as model substrates of mulberry bark, ramie, bamboo and Eulaliopsis binata papers, respectively. Two forms of the paper samples, paper sheets and their comminuted powders, were used in this study. The results showed that their XRD patterns belong to the cellulose-I type and Iβ dominates the cellulose microstructure of these paper samples. Moreover, it was found that the microstructures and CrIs of cellulose of these papers were changed by the grinding treatment. This work suggested that the sheet form of the handmade papers is suitable to determine CrI by XRD, despite the contribution of non-cellulosic components in the papers. The order of CrIs for these paper sheet samples was Yingchun, Zhuma, Longxucao and Yuanshu papers. Besides CrIs, differences in cross-sectional areas of the crystalline zone of cellulose can be used for comparing different types of handmade papers. It was also found that the CrIs and crystallite size of paper cellulose varied between the sheet samples and the powder samples, illustrating that the pulverisation has a negative influence on the microstructure of the handmade papers.


Author(s):  
H. B. Gasimov ◽  
R. M. Rzayev

Cu2Te single crystal was grown by the Bridgman method. X-ray diffraction (XRD) study of Cu2Te single crystals in the temperature range of 293–893 K was performed and possible phase transitions in the mentioned range of temperature have been investigated. (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals also were grown with [Formula: see text], 0.05, 0.10 concentrations and structural properties of the obtained single crystals were investigated by the XRD method in the temperature range 293–893 K. Lattice parameters and possible phase transitions in the mention temperature range were determined for (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals for [Formula: see text], 0.05, 0.10 concentrations.


1997 ◽  
Vol 12 (6) ◽  
pp. 1472-1480 ◽  
Author(s):  
Katherine C. Chen ◽  
Samuel M. Allen ◽  
James D. Livingston

Microstructures of two-phase Ti–Cr alloys (Ti-rich bcc + TiCr2 and Cr-rich bcc + TiCr2) are analyzed. A variety of TiCr2 precipitate morphologies is encountered with different nominal alloy compositions and annealing temperatures. Lattice constants and crystal structures are determined by x-ray diffraction (XRD) and transmission electron microscopy (TEM). Orientation relationships between the beta bcc solid solution and C15 TiCr2 Laves phase are understood in terms of geometrical packing, and are consistent with a Laves phase growth mechanism involving twinning.


2017 ◽  
Vol 31 (02) ◽  
pp. 1750006 ◽  
Author(s):  
Mohammad Hossein Ghorbani ◽  
Abdol Mahmood Davarpanah

Manganese oxides are of more interest to researchers because of their ability as catalysts and lithium batteries. In this research, MnO2nanowires with diameter about 45 nm were synthesized by sol–gel method at room temperature (RT). Effect of increasing the annealing temperature from 400[Formula: see text]C to 600[Formula: see text]C on crystalline structure of nanostructure were studied and average crystallite size was estimated about 22 nm. X-ray Diffraction (XRD) method, Energy-Dispersive X-ray Diffraction (EDXD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) were used to characterize the nanowires of MnO2.


Sign in / Sign up

Export Citation Format

Share Document