scholarly journals Procedure for Seeding Cells on the Disque Platform v1

Author(s):  
Peter Anthony Jones* ◽  
Kisuk Yang* ◽  
Jeffrey M Karp

Advances in treating β cell loss include islet replacement therapies or increasing cell proliferation rate in type 1 and type 2 diabetes. We previously developed a proliferation-inducing prodrug (ZnPD6) that targets the high concentration of zinc ions in β cells, and which exhibits a 2.4-fold increase in β cell proliferation compared to the DYRK1A inhibitor harmine. These prodrugs were identified through screening on the Disque Platform (DP)—a high-fidelity culture system where stem cell–derived β cells are reaggregated into thin, 3D discs within 2D 96-well plates that mimic in vivo conditions. The Disque Platform allows for the formation of 3D micro-tissues within an automation-friendly design, and is capable of systematically manipulating the cell niche in order to identify chemical and physical cues that enhance β cell proliferation. The Disque Platform better replicates the zinc content of native islets, enabling for the screening of zinc-activated prodrugs whose activity cannot be detected in 2D culture systems, which typically display a markedly lowered zinc content. The Disque Platform is a reliable screening platform that bridges the advantages of 2D and 3D culture systems and responds to interventions when conventional systems cannot produce a clear signal or readout. Here we describe a standard protocol for the formation of 3D micro-tissues in the Disque Platform.

2020 ◽  
Vol 6 (47) ◽  
pp. eabc3207
Author(s):  
Kisuk Yang ◽  
Miseon Lee ◽  
Peter Anthony Jones ◽  
Sophie S. Liu ◽  
Angela Zhou ◽  
...  

Advances in treating β cell loss include islet replacement therapies or increasing cell proliferation rate in type 1 and type 2 diabetes, respectively. We propose developing multiple proliferation-inducing prodrugs that target high concentration of zinc ions in β cells. Unfortunately, typical two-dimensional (2D) cell cultures do not mimic in vivo conditions, displaying a markedly lowered zinc content, while 3D culture systems are laborious and expensive. Therefore, we developed the Disque Platform (DP)—a high-fidelity culture system where stem cell–derived β cells are reaggregated into thin, 3D discs within 2D 96-well plates. We validated the DP against standard 2D and 3D cultures and interrogated our zinc-activated prodrugs, which release their cargo upon zinc chelation—so preferentially in β cells. Through developing a reliable screening platform that bridges the advantages of 2D and 3D culture systems, we identified an effective hit that exhibits 2.4-fold increase in β cell proliferation compared to harmine.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 264
Author(s):  
Seon-Heui Cha ◽  
Chunying Zhang ◽  
Soo-Jin Heo ◽  
Hee-Sook Jun

Pancreatic β-cell loss is critical in diabetes pathogenesis. Up to now, no effective treatment has become available for β-cell loss. A polyphenol recently isolated from Polysiphonia japonica, 5-Bromoprotocatechualdehyde (BPCA), is considered as a potential compound for the protection of β-cells. In this study, we examined palmitate (PA)-induced lipotoxicity in Ins-1 cells to test the protective effects of BPCA on insulin-secreting β-cells. Our results demonstrated that BPCA can protect β-cells from PA-induced lipotoxicity by reducing cellular damage, preventing reactive oxygen species (ROS) overproduction, and enhancing glucose-stimulated insulin secretion (GSIS). BPCA also improved mitochondrial morphology by preserving parkin protein expression. Moreover, BPCA exhibited a protective effect against PA-induced β-cell dysfunction in vivo in a zebrafish model. Our results provide strong evidence that BPCA could be a potential therapeutic agent for the management of diabetes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dror Sever ◽  
Anat Hershko-Moshe ◽  
Rohit Srivastava ◽  
Roy Eldor ◽  
Daniel Hibsher ◽  
...  

AbstractNF-κB is a well-characterized transcription factor, widely known for its roles in inflammation and immune responses, as well as in control of cell division and apoptosis. However, its function in β-cells is still being debated, as it appears to depend on the timing and kinetics of its activation. To elucidate the temporal role of NF-κB in vivo, we have generated two transgenic mouse models, the ToIβ and NOD/ToIβ mice, in which NF-κB activation is specifically and conditionally inhibited in β-cells. In this study, we present a novel function of the canonical NF-κB pathway during murine islet β-cell development. Interestingly, inhibiting the NF-κB pathway in β-cells during embryogenesis, but not after birth, in both ToIβ and NOD/ToIβ mice, increased β-cell turnover, ultimately resulting in a reduced β-cell mass. On the NOD background, this was associated with a marked increase in insulitis and diabetes incidence. While a robust nuclear immunoreactivity of the NF-κB p65-subunit was found in neonatal β-cells, significant activation was not detected in β-cells of either adult NOD/ToIβ mice or in the pancreata of recently diagnosed adult T1D patients. Moreover, in NOD/ToIβ mice, inhibiting NF-κB post-weaning had no effect on the development of diabetes or β-cell dysfunction. In conclusion, our data point to NF-κB as an important component of the physiological regulatory circuit that controls the balance of β-cell proliferation and apoptosis in the early developmental stages of insulin-producing cells, thus modulating β-cell mass and the development of diabetes in the mouse model of T1D.


2010 ◽  
Vol 298 (2) ◽  
pp. E245-E256 ◽  
Author(s):  
Florence Figeac ◽  
Benjamin Uzan ◽  
Monique Faro ◽  
Noura Chelali ◽  
Bernard Portha ◽  
...  

Wnt/β-catenin signaling is critical for a variety of fundamental cellular processes. Here, we investigated the implication of the Wnt/β-catenin signaling in the in vivo regulation of β-cell growth and regeneration in normal and diabetic rats. To this aim, TCF7L2, the distal effector of the canonical Wnt pathway, was knocked down in groups of normal and diabetic rats by the use of specific antisense morpholino-oligonucleotides. In other groups of diabetic rats, the Wnt/β-catenin pathway was activated by the inhibition of its negative regulator GSK-3β. GSK-3β was inactivated by either LiCl or anti-GSK-3β oligonucleotides. The β-cell mass was evaluated by morphometry. β-cell proliferation was assessed in vivo and in vitro by BrdU incorporation method. In vivo β-cell neogenesis was estimated by the evaluation of PDX1-positive ductal cells and GLUT2-positive ductal cells and the number of β cells budding from the ducts. We showed that the in vivo disruption of the canonical Wnt pathway resulted in the alteration of normal and compensatory growth of β-cells mainly through the inhibition of β-cell proliferation. Conversely, activation of the Wnt pathway through the inhibition of GSK-3β had a significant stimulatory effect on β-cell regeneration in diabetic rats. In vitro, GSK-3β inactivation resulted in the stimulation of β-cell proliferation. This was mediated by the stabilization of β-catenin and the induction of cyclin D. Taken together, our results demonstrate the involvement of the canonical Wnt signaling in the neonatal regulation of normal and regenerative growth of pancreatic β-cells. Moreover, we provide evidence that activation of this pathway by pharmacological maneuvers can efficiently improve β-cell regeneration in diabetic rats. These findings might have potential clinical applications in the regenerative therapy of diabetes.


Endocrinology ◽  
2011 ◽  
Vol 152 (12) ◽  
pp. 4589-4600 ◽  
Author(s):  
Jennifer L. Plank ◽  
Audrey Y. Frist ◽  
Alison W. LeGrone ◽  
Mark A. Magnuson ◽  
Patricia A. Labosky

A complete molecular understanding of β-cell mass expansion will be useful for the improvement of therapies to treat diabetic patients. During normal periods of metabolic challenges, such as pregnancy, β-cells proliferate, or self-renew, to meet the new physiological demands. The transcription factor Forkhead box D3 (Foxd3) is required for maintenance and self-renewal of several diverse progenitor cell lineages, and Foxd3 is expressed in the pancreatic primordium beginning at 10.5 d postcoitum, becoming localized predominantly to β-cells after birth. Here, we show that mice carrying a pancreas-specific deletion of Foxd3 have impaired glucose tolerance, decreased β-cell mass, decreased β-cell proliferation, and decreased β-cell size during pregnancy. In addition, several genes known to regulate proliferation, Foxm1, Skp2, Ezh2, Akt2, and Cdkn1a, are misregulated in islets isolated from these Foxd3 mutant mice. Together, these data place Foxd3 upstream of several pathways critical for β-cell mass expansion in vivo.


2020 ◽  
Author(s):  
Diane C. Saunders ◽  
Kristie I. Aamodt ◽  
Tiffany M. Richardson ◽  
Alec Hopkirk ◽  
Radhika Aramandla ◽  
...  

ABSTRACTEndogenous β cell regeneration could alleviate diabetes, but proliferative stimuli within the islet microenvironment are incompletely understood. We previously found that β cell recovery following hypervascularization-induced β cell loss involves interactions with endothelial cells (ECs) and macrophages (MΦs). Here we show that proliferative ECs modulate MΦ infiltration and phenotype during β cell loss, and recruited MΦs are essential for β cell recovery. Furthermore, VEGFR2 inactivation in quiescent ECs accelerates islet vascular regression during β cell recovery and leads to increased β cell proliferation without changes in MΦ phenotype or number. Transcriptome analysis of β cells, ECs, and MΦs reveals that β cell proliferation coincides with elevated expression of extracellular matrix remodeling molecules and growth factors likely driving activation of proliferative signaling pathways in β cells. Collectively, these findings suggest a new β cell regeneration paradigm whereby coordinated interactions between intra-islet MΦs, ECs, and extracellular matrix mediate β cell self-renewal.


2021 ◽  
Author(s):  
Caterina Iorio ◽  
Jillian L Rourke ◽  
Lisa Wells ◽  
Jun-Ichi Sakamaki ◽  
Emily Moon ◽  
...  

Loss of pancreatic β cells is the hallmark of type 1 diabetes (T1D), for which provision of insulin is the standard of care. While regenerative and stem cell therapies hold the promise of generating single-source or host-matched tissue to obviate immune-mediated complications, these will still require surgical intervention and immunosuppression. Thus, methods that harness the innate capacity of β cells to proliferate to increase β cell mass in vivo are considered vital for future T1D treatment. However, early in life β cells enter what appears to be a permanent state of quiescence, directed by an evolutionarily selected genetic program that establishes a β cell mass setpoint to guard against development of fatal endocrine tumours. Here we report the development of a high-throughput RNAi screening approach to identify upstream pathways that regulate adult human β cell quiescence and demonstrate in a screen of the GPCRome that silencing G-protein coupled receptor 3 (GPR3) leads to human pancreatic β cell proliferation. Loss of GPR3 leads to activation of Salt Inducible Kinase 2 (SIK2), which is necessary and sufficient to drive cell cycle entry, increase β cell mass, and enhance insulin secretion in mice. Taken together, targeting the GPR3-SIK2 pathway represents a novel avenue to stimulate the regeneration of β cells.


2018 ◽  
Vol 399 (6) ◽  
pp. 565-576 ◽  
Author(s):  
Brian Lu ◽  
Miguel Munoz-Gomez ◽  
Yasuhiro Ikeda

Abstract Glucokinase (GCK) is crucial to regulating glucose metabolism in the liver and in pancreatic β-cells. There are two major GCK isoforms, hepatic and pancreatic GCKs, which differ only in exon 1. However, the functional differences between the two GCK isoforms remain poorly understood. Here, we used a β-cell-targeted gene transfer vector to determine the impact of isoform-specific GCK overexpression on β-cells in vitro and in vivo. We showed that pancreatic GCK had a nuclear localization signal unique to the pancreatic isoform, facilitating its nuclear distribution in β-cells. Despite the difference in subcellular distribution, overexpression of GCK isoforms similarly enhanced glucose uptake and β-cell proliferation in vitro. Overexpression of hepatic or pancreatic GCK also similarly enhanced β-cell proliferation in normal diet mice without affecting fasting glucose and intraperitoneal glucose tolerance tests (IPGTT). Our further study on human GCK sequences identified disproportional GCK amino acid variants in exon 1, while mutations linked to maturity onset diabetes of the young type 2 (MODY2) were disproportionally found in exons 2 through 10. Our results therefore indicate functional conservation between the two major GCK isoforms despite their distinct subcellular distribution.


Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2589-2598 ◽  
Author(s):  
Seth J. Salpeter ◽  
Agnes Klochendler ◽  
Noa Weinberg-Corem ◽  
Shay Porat ◽  
Zvi Granot ◽  
...  

Understanding the molecular triggers of pancreatic β-cell proliferation may facilitate the development of regenerative therapies for diabetes. Genetic studies have demonstrated an important role for cyclin D2 in β-cell proliferation and mass homeostasis, but its specific function in β-cell division and mechanism of regulation remain unclear. Here, we report that cyclin D2 is present at high levels in the nucleus of quiescent β-cells in vivo. The major regulator of cyclin D2 expression is glucose, acting via glycolysis and calcium channels in the β-cell to control cyclin D2 mRNA levels. Furthermore, cyclin D2 mRNA is down-regulated during S-G2-M phases of each β-cell division, via a mechanism that is also affected by glucose metabolism. Thus, glucose metabolism maintains high levels of nuclear cyclin D2 in quiescent β-cells and modulates the down-regulation of cyclin D2 in replicating β-cells. These data challenge the standard model for regulation of cyclin D2 during the cell division cycle and suggest cyclin D2 as a molecular link between glucose levels and β-cell replication.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Diane C. Saunders ◽  
Kristie I. Aamodt ◽  
Tiffany M. Richardson ◽  
Alexander J. Hopkirk ◽  
Radhika Aramandla ◽  
...  

AbstractEndogenous β cell regeneration could alleviate diabetes, but proliferative stimuli within the islet microenvironment are incompletely understood. We previously found that β cell recovery following hypervascularization-induced β cell loss involves interactions with endothelial cells (ECs) and macrophages (MΦs). Here we show that proliferative ECs modulate MΦ infiltration and phenotype during β cell loss, and recruited MΦs are essential for β cell recovery. Furthermore, VEGFR2 inactivation in quiescent ECs accelerates islet vascular regression during β cell recovery and leads to increased β cell proliferation without changes in MΦ phenotype or number. Transcriptome analysis of β cells, ECs, and MΦs reveals that β cell proliferation coincides with elevated expression of extracellular matrix remodeling molecules and growth factors likely driving activation of proliferative signaling pathways in β cells. Collectively, these findings suggest a new β cell regeneration paradigm whereby coordinated interactions between intra-islet MΦs, ECs, and extracellular matrix mediate β cell self-renewal.


Sign in / Sign up

Export Citation Format

Share Document