Effect of different types of non-invasive central nervous system stimulation on pain perception, cortical and spinal cord excitability in healthy individuals. v1 (protocols.io.nkidcue)

protocols.io ◽  
2018 ◽  
Author(s):  
Pl nio
1974 ◽  
Vol 02 (02) ◽  
pp. 121-148 ◽  
Author(s):  
P. R. Burgess

Evidence is presented that the signal that damage has occurred to an animal begins with the activation of receptors which respond specifically to noxious stimuli. In fact, different types of nociceptors are found which respond selectively to different types of damage. The activity of nociceptive sensory fibers influences neurons in the spinal cord which are not activated by other types of somatic stimuli and are thus specific. At higher levels of the nervous system less is known about the physiology of pain and such fundamental questions as the degree to which the cerebral cortex is involved in pain perception have not been answered. It is not known to what extent the mechanisms at higher levels are specific and the significance of convergent systems in which an individual neuron can be excited by a number of different stimuli, both noxious and innocuous, has not been resolved. However, it is argued that the evidence at present most strongly supports the concept that the neural system involved in pain is specific; the activity of neurons in this system either causes pain, or if the level of activity is insufficient, no sensation. Ways in which the activity of this specific system may be modulated are discussed in the context of counterirritation and acupuncture analgesia.


1999 ◽  
Vol 62 (4) ◽  
pp. 390-393 ◽  
Author(s):  
G. R. SCHMIDT ◽  
K. L. HOSSNER ◽  
R. S. YEMM ◽  
D. H. GOULD

The application of pneumatic-powered air injection stunners (PPAISs), pneumatic-powered stunners (PPSs), and cartridge-fired stunners (CFSs) in commercial beef slaughter plants was evaluated to determine the extent of dissemination of central nervous system tissue. Fifteen beef slaughter plants in the western and central United States were visited to observe stunning methods and the condition of the hearts at postmortem inspection. As inspectors performed the normal opening of the hearts, the research observer evaluated the contents of the heart for the presence of clots and/or visible tissue segments in the right ventricle. In eight plants where PPAISs were used, 33% of hearts examined (n = 1,050) contained large clots in the right ventricles. In the four plants where CFSs were used, 1% of the hearts (n = 480) contained detectable clots. In three plants where the newly modified PPSs were used, 12% of the hearts (n = 450) contained detectable clots. Large segments of spinal cord were detected, collected, photographed, and confirmed histologically from two hearts in a plant that used a PPAIS. Most of the material was found in a single right ventricle and was composed of 10 to 13 cm segments of spinal cord.


2018 ◽  
Vol 23 (1) ◽  
pp. 10-13
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Injuries that affect the central nervous system (CNS) can be catastrophic because they involve the brain or spinal cord, and determining the underlying clinical cause of impairment is essential in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), in part because the AMA Guides addresses neurological impairment in several chapters. Unlike the musculoskeletal chapters, Chapter 13, The Central and Peripheral Nervous System, does not use grades, grade modifiers, and a net adjustment formula; rather the chapter uses an approach that is similar to that in prior editions of the AMA Guides. The following steps can be used to perform a CNS rating: 1) evaluate all four major categories of cerebral impairment, and choose the one that is most severe; 2) rate the single most severe cerebral impairment of the four major categories; 3) rate all other impairments that are due to neurogenic problems; and 4) combine the rating of the single most severe category of cerebral impairment with the ratings of all other impairments. Because some neurological dysfunctions are rated elsewhere in the AMA Guides, Sixth Edition, the evaluator may consult Table 13-1 to verify the appropriate chapter to use.


1963 ◽  
Vol 44 (3) ◽  
pp. 475-480 ◽  
Author(s):  
R. Grinberg

ABSTRACT Radiologically thyroidectomized female Swiss mice were injected intraperitoneally with 131I-labeled thyroxine (T4*), and were studied at time intervals of 30 minutes and 4, 28, 48 and 72 hours after injection, 10 mice for each time interval. The organs of the central nervous system and the pituitary glands were chromatographed, and likewise serum from the same animal. The chromatographic studies revealed a compound with the same mobility as 131I-labeled triiodothyronine in the organs of the CNS and in the pituitary gland, but this compound was not present in the serum. In most of the chromatographic studies, the peaks for I, T4 and T3 coincided with those for the standards. In several instances, however, such an exact coincidence was lacking. A tentative explanation for the presence of T3* in the pituitary gland following the injection of T4* is a deiodinating system in the pituitary gland or else the capacity of the pituitary gland to concentrate T3* formed in other organs. The presence of T3* is apparently a characteristic of most of the CNS (brain, midbrain, medulla and spinal cord); but in the case of the optic nerve, the compound is not present under the conditions of this study.


1985 ◽  
Vol 55 ◽  
Author(s):  
F. Terry Hambrecht

ABSTRACTNeural prostheses which are commercially available include cochlear implants for treating certain forms of deafness and urinary bladder evacuation prostheses for individuals with spinal cord disorders. In the future we can anticipate improvements in bioelectrodes and biomaterials which should permit more sophisticated devices such as visual prostheses for the blind and auditory prostheses for the deaf based on microstimulation of the central nervous system.


2020 ◽  
Vol 2 (Supplement_3) ◽  
pp. ii21-ii21
Author(s):  
Shumpei Onishi ◽  
Fumiyuki Yamasaki ◽  
Motoki Takano ◽  
Ushio Yonezawa ◽  
Kazuhiko Sugiyama ◽  
...  

Abstract Objective: Glioblastoma (GBM) and Primary Central Nervous System Lymphoma (PCNSL) are common intracranial malignant tumors. They sometimes present similar radiological findings and diagnoses could be difficult without surgical biopsy. For improving the current management, development of non-invasive biomarkers are desired. In this study, we explored the differently expressed circulating small noncoding RNA (sncRNA) in serum for specific diagnostic tool of GBM and PCNSL. Material & Methods: Serum samples were obtained from three groups: 1) GBM patients (N=26), 2) PCNSL patients (N=14) 3) healthy control (N=114). The total small RNAs were extracted from serum. The whole expression profiles of serum sncRNAs were measured using Next-Generation Sequencing System. We analyzed serum levels of sncRNAs (15–55 nt) in each serum samples. The difference of sncRNAs expression profile among three groups were compared. Data analysis was performed by logistic regression analysis followed by leave-one-out cross-validation (LOOCV). The accuracy of diagnostic models of sncRNAs combination were evaluated by receiver operating characteristic (ROC) analysis. Results: We created the combination models using three sncRNA in each models based on the logistic regression analysis. The model 1 (based on sncRNA-X1, X2 and X3) enabled to differentiate GBM patients form healthy control with a sensitivity of 92.3% and a specificity of 99.2% (AUC: 0.993). The model 2 (based on sncRNA-Y1, Y2 and Y3) enabled to differentiate PCNSL patients form healthy control with a sensitivity of 100% and a specificity of 93.9% (AUC: 0.984). The model 3 (based on sncRNA-Z1, Z2 and Z3) enabled to differentiate GBM patients form PCNSL patients with a sensitivity of 92.3% and a specificity of 78.6% (AUC: 0.920). Conclusion: We found three diagnostic models of serum sncRNAs as non-invasive biomarkers potentially useful for detection of GBM and PCNSL from healthy control, and for differentiation GBM from PCNSL.


1982 ◽  
Vol 60 (11) ◽  
pp. 1415-1424 ◽  
Author(s):  
H. B. Demopoulos ◽  
E. S. Flamm ◽  
M. L. Seligman ◽  
D. D. Pietronigro ◽  
J. Tomasula ◽  
...  

The hypothesis that pathologic free-radical reactions are initiated and catalyzed in the major central nervous system (CNS) disorders has been further supported by the current acute spinal cord injury work that has demonstrated the appearance of specific, cholesterol free-radical oxidation products. The significance of these products is suggested by the fact that: (i) they increase with time after injury; (ii) their production is curtailed with a steroidal antioxidant; (iii) high antioxidant doses of the steroidal antioxidant which curtail the development of free-radical product prevent tissue degeneration and permit functional restoration. The role of pathologic free-radical reactions is also inferred from the loss of ascorbic acid, a principal CNS antioxidant, and of extractable cholesterol. These losses are also prevented by the steroidal antioxidant. This model system is among others in the CNS which offer distinctive opportunities to study, in vivo, the onset and progression of membrane damaging free-radical reactions within well-defined parameters of time, extent of tissue injury, correlation with changes in membrane enzymes, and correlation with readily measurable in vivo functions.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3028
Author(s):  
George I. Lambrou ◽  
Apostolos Zaravinos ◽  
Maria Braoudaki

Despite extensive experimentation on pediatric tumors of the central nervous system (CNS), related to both prognosis, diagnosis and treatment, the understanding of pathogenesis and etiology of the disease remains scarce. MicroRNAs are known to be involved in CNS tumor oncogenesis. We hypothesized that CNS tumors possess commonly deregulated miRNAs across different CNS tumor types. Aim: The current study aims to reveal the co-deregulated miRNAs across different types of pediatric CNS tumors. Materials: A total of 439 CNS tumor samples were collected from both in-house microarray experiments as well as data available in public databases. Diagnoses included medulloblastoma, astrocytoma, ependydoma, cortical dysplasia, glioblastoma, ATRT, germinoma, teratoma, yoc sac tumors, ocular tumors and retinoblastoma. Results: We found miRNAs that were globally up- or down-regulated in the majority of the CNS tumor samples. MiR-376B and miR-372 were co-upregulated, whereas miR-149, miR-214, miR-574, miR-595 and miR-765 among others, were co-downregulated across all CNS tumors. Receiver-operator curve analysis showed that miR-149, miR-214, miR-574, miR-595 and miR765 could distinguish between CNS tumors and normal brain tissue. Conclusions: Our approach could prove significant in the search for global miRNA targets for tumor diagnosis and therapy. To the best of our knowledge, there are no previous reports concerning the present approach.


Sign in / Sign up

Export Citation Format

Share Document