Features of structure and mechanical properties formation in shaped rolled products made of 09G2S steel in accelerated water cooling process

2021 ◽  
pp. 60-67
Author(s):  
A. B. Sychkov ◽  
A. B. Moller ◽  
G. Ya. Atangulova ◽  
G. V. Agutin
2021 ◽  
Vol 57 (2) ◽  
pp. 025001
Author(s):  
J E M Perea Martins

Abstract This work presents the design of an inexpensive electronic system to measure water temperature and generate an experimental data set used to verify the fitting between experimental and theoretical curves of a water-cooling process. The cooling constant is computed with three different theoretical methods to check their efficiency and this approach allows the association of theoretical and experimental aspects of physics, mathematics and electronic instrumentation, which can motivate interesting discussions in the classroom.


Author(s):  
Adel Sedaghati ◽  
Hamed Bouzary

In this paper, the effect of water cooling on mechanical properties and microstructure of AA5086 aluminum joints during friction stir welding is investigated. For doing so, the mechanical and microstructural behavior of samples welded both in air and in water was analyzed. Tests were performed involving both butt and lap welds and the results were compared. The effect of rotational speed at constant feed rate of 50 mm/min and changing rotational speed ranging from 250 to 1250 r/min was investigated. The results showed a significant change in the tensile behavior of the butt-welded specimens due to water cooling. In addition, welding was performed at constant spindle speed of 800 r/min and various traverse speeds (25 mm/min to 80 mm/min) to determine the effect of feed rate. The strength increases at first, but then decreases dramatically along with the feed rate which is due to the occurrence of a groove defect. Results showed some generally positive impacts of water cooling which are discussed in terms of tensile results, hardness distributions and microstructure analysis.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Liangbin Dou ◽  
Guanli Shu ◽  
Hui Gao ◽  
Jinqing Bao ◽  
Rui Wang

The investigation of changes in physical properties, mechanical properties, and microscopic pore structure characteristics of tight sandstone after high-temperature heat treatment provides a theoretical basis for plugging removal and stimulation techniques, such as high energy gas fracturing and explosive fracturing. In this study, core samples, taken from tight sandstone reservoirs of the Yanchang Formation in the Ordos Basin, were first heated to different temperatures (25-800°C) and then cooled separately by two distinct cooling methods—synthetic formation water cooling and natural cooling. The variations of wave velocity, permeability, tensile strength, uniaxial compressive strength, and microscopic pore structure of the core samples were analyzed. Experimental results demonstrate that, with the rise of heat treatment temperature, the wave velocity and tensile strength of tight sandstone decrease nonlinearly, yet its permeability increases nonlinearly. The tight sandstone’s peak strength and elastic modulus exhibit a trend of the first climbing and then declining sharply with increasing temperature. After being treated by heat at different temperatures, the number of small pores varies little, but the number of large pores increases obviously. Compared to natural cooling, the values of physical and mechanical properties of core samples treated by synthetic formation water cooling are apparently smaller, whereas the size and number of pores are greater. It can be explained that water cooling brings about a dramatic reduction of tight sandstone’s surface temperature, generating additional thermal stress and intensifying internal damage to the core. For different cooling methods, the higher the core temperature before cooling, the greater the thermal stress and the degree of damage caused during the cooling process. By taking into consideration of changes in physical properties, mechanical properties, and microscopic pore structure characteristics, the threshold temperature of tight sandstone is estimated in the range of 400-600°C.


2020 ◽  
Vol 18 (5) ◽  
pp. 104
Author(s):  
G.R. Halikova ◽  
J.N. Shermatov ◽  
E.A. Naumkin

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3245
Author(s):  
Lixin Song ◽  
Yongchao Li ◽  
Xiangyu Meng ◽  
Ting Wang ◽  
Ying Shi ◽  
...  

Poly (lactic acid) (PLA)-Poly (propylene carbonate) (PPC) block copolymer compatibilizers are produced in incompatible 70wt%PLA/PPC blend by initiating transesterification with addition of 1% of tetra butyl titanate (TBT) or by chain extension with addition of 2% of 2,4-toluene diisocyanate (TDI). The above blends can have much better mechanical properties than the blend without TBT and TDI. The elongation at break is dramatically larger (114% with 2% of TDI and 60% with 1% of TBT) than the blend without TDI and TBT, with a slightly lower mechanical strength. A small fraction of the copolymer is likely formed in the PLA/PPC blend with addition of TBT, and a significant amount of the copolymer can be made with addition of TDI. The copolymer produced with TDI has PPC as a major content (~70 wt%) and forms a miscible interphase with its own Tg. The crystallinity of the blend with TDI is significantly lower than the blend without TDI, as the PLA blocks of the copolymer in the interphase is hardly to crystallize. The average molecular weight increases significantly with addition of TDI, likely compensating the lower mechanical strength due to lower crystallinity. Material degradation can occur with addition of TBT, but it is very limited with 1% of TBT. However, compared with the blends without TBT, the PLA crystallinity of the blend with 1%TBT increases sharply during the cooling process, which likely compensates the loss of mechanical strength due to the slightly material degradation. The added TDI does not have any significant impact on PLA lamellar packing, but the addition of TBT can make PLA lamellar packing much less ordered, presumably resulted from much smaller PPC domains formed in the blend due to better compatibility.


2018 ◽  
Vol 25 (4) ◽  
pp. 426-432
Author(s):  
M.L. Li ◽  
H. Jiang ◽  
Y.L. He ◽  
L.B. Chen ◽  
G.T. Zhang ◽  
...  

Author(s):  
Haopeng Jiang ◽  
Annan Jiang ◽  
Fengrui Zhang

Experimental tests were conducted to study the influence of natural cooling and water cooling on the physical and mechanical properties of quartz sandstone. This study aims to understand the effect of different cooling methods on the physical and mechanical properties of quartz sandstone (such as mass, volume, density, P-wave velocity, elastic modulus, uniaxial compressive strength, etc.). The results show that the uniaxial compressive strength (UCS) and elastic modulus(E) of the specimens cooled by natural-cooling and water-cooling decrease with heating temperature. At 800℃, after natural cooling and water cooling, the average value of UCS decreased by 34.65% and 57.90%, and the average value of E decreased by 87.66% and 89.05%, respectively. Meanwhile, scanning electron microscope (SEM) images were used to capture the development of microcracks and pores within the specimens after natural-cooling and water-cooling, and it was found that at the same temperature, water cooling treatment was more likely to cause microcracks and pores, which can cause more serious damage to the quartz sandstone. These results confirm that different cooling methods have different effects on the physical and mechanical properties of quartz sandstone, and provide a basis for the stability prediction of rock mass engineering such as tunnel suffering from fire.


Author(s):  
Zhou Fang ◽  
Weiwei Hu ◽  
Deyu Liu ◽  
Guanghai Li ◽  
Zhe Wang

The fire process was simulated by the heat treatment to the Steel SPV490 of atmospheric storage tank, thereby obtaining the metal specimens in different fire temperature, holding time, and cooling modes. And as the temperature increases, the microscopic structure of Steel SPV490 changes under different working conditions, which could be shown in optical microstructure pictures after doing the interception, inlay, polishing, finishing to the specimens. The result shows that, the mechanical properties of the Steel SPV490 for storage tank changes as the temperature rising from the microscopic view. Nodulizing of the cementite in pearlite occurs, and the strength decreases when the high strength steel SPV490 of large atmospheric storage tanks under air cooling condition below 700 °C, however, it equivalents to the normalizing process, as the sorbite occurs in the steel, and the strength increases a bit when the temperature is above 900 °C. The water-cooling of steel SPV490 above 900 °C equivalents to the process of quenching. The occurrence of martensitic substantially increases the strength and the brittleness, and the elongation decreases rapidly.


Sign in / Sign up

Export Citation Format

Share Document