Environment for Threat Intelligence Analysis and Generation using Open Sources

2019 ◽  
Vol 6 (1) ◽  
pp. 9-14
Author(s):  
José Valdy Campelo Júnior ◽  
João José Costa Gondim

Analyzing attacks on computer networks is complex given the volume of data considered and the large number of machines, even in small networks. The volume of data is large and the time to process and analyze it is short. The goal is to extract and analyze information about network attacks that has been obtained from open sources. Using a robust, elastic and scalable architecture that makes use of processing techniques with the use of Hadoop so that the information is available in a timely manner. With the proposed architecture implemented all the desired characteristics were obtained allowing the processing of the data in near real time. The system provides intelligence information about large-scale attacks with agility and efficiency.

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1747
Author(s):  
Hansaka Angel Dias Edirisinghe Kodituwakku ◽  
Alex Keller ◽  
Jens Gregor

The complexity and throughput of computer networks are rapidly increasing as a result of the proliferation of interconnected devices, data-driven applications, and remote working. Providing situational awareness for computer networks requires monitoring and analysis of network data to understand normal activity and identify abnormal activity. A scalable platform to process and visualize data in real time for large-scale networks enables security analysts and researchers to not only monitor and study network flow data but also experiment and develop novel analytics. In this paper, we introduce InSight2, an open-source platform for manipulating both streaming and archived network flow data in real time that aims to address the issues of existing solutions such as scalability, extendability, and flexibility. Case-studies are provided that demonstrate applications in monitoring network activity, identifying network attacks and compromised hosts and anomaly detection.


2004 ◽  
Author(s):  
Eugene Santos, Jr. ◽  
Eunice E. Santos ◽  
Eugene S. Santos

2018 ◽  
Vol 68 (12) ◽  
pp. 2857-2859
Author(s):  
Cristina Mihaela Ghiciuc ◽  
Andreea Silvana Szalontay ◽  
Luminita Radulescu ◽  
Sebastian Cozma ◽  
Catalina Elena Lupusoru ◽  
...  

There is an increasing interest in the analysis of salivary biomarkers for medical practice. The objective of this article was to identify the specificity and sensitivity of quantification methods used in biosensors or portable devices for the determination of salivary cortisol and salivary a-amylase. There are no biosensors and portable devices for salivary amylase and cortisol that are used on a large scale in clinical studies. These devices would be useful in assessing more real-time psychological research in the future.


2020 ◽  
Vol 34 (10) ◽  
pp. 13849-13850
Author(s):  
Donghyeon Lee ◽  
Man-Je Kim ◽  
Chang Wook Ahn

In a real-time strategy (RTS) game, StarCraft II, players need to know the consequences before making a decision in combat. We propose a combat outcome predictor which utilizes terrain information as well as squad information. For training the model, we generated a StarCraft II combat dataset by simulating diverse and large-scale combat situations. The overall accuracy of our model was 89.7%. Our predictor can be integrated into the artificial intelligence agent for RTS games as a short-term decision-making module.


2021 ◽  
Vol 51 (3) ◽  
pp. 9-16
Author(s):  
José Suárez-Varela ◽  
Miquel Ferriol-Galmés ◽  
Albert López ◽  
Paul Almasan ◽  
Guillermo Bernárdez ◽  
...  

During the last decade, Machine Learning (ML) has increasingly become a hot topic in the field of Computer Networks and is expected to be gradually adopted for a plethora of control, monitoring and management tasks in real-world deployments. This poses the need to count on new generations of students, researchers and practitioners with a solid background in ML applied to networks. During 2020, the International Telecommunication Union (ITU) has organized the "ITU AI/ML in 5G challenge", an open global competition that has introduced to a broad audience some of the current main challenges in ML for networks. This large-scale initiative has gathered 23 different challenges proposed by network operators, equipment manufacturers and academia, and has attracted a total of 1300+ participants from 60+ countries. This paper narrates our experience organizing one of the proposed challenges: the "Graph Neural Networking Challenge 2020". We describe the problem presented to participants, the tools and resources provided, some organization aspects and participation statistics, an outline of the top-3 awarded solutions, and a summary with some lessons learned during all this journey. As a result, this challenge leaves a curated set of educational resources openly available to anyone interested in the topic.


Author(s):  
Paul Oehlmann ◽  
Paul Osswald ◽  
Juan Camilo Blanco ◽  
Martin Friedrich ◽  
Dominik Rietzel ◽  
...  

AbstractWith industries pushing towards digitalized production, adaption to expectations and increasing requirements for modern applications, has brought additive manufacturing (AM) to the forefront of Industry 4.0. In fact, AM is a main accelerator for digital production with its possibilities in structural design, such as topology optimization, production flexibility, customization, product development, to name a few. Fused Filament Fabrication (FFF) is a widespread and practical tool for rapid prototyping that also demonstrates the importance of AM technologies through its accessibility to the general public by creating cost effective desktop solutions. An increasing integration of systems in an intelligent production environment also enables the generation of large-scale data to be used for process monitoring and process control. Deep learning as a form of artificial intelligence (AI) and more specifically, a method of machine learning (ML) is ideal for handling big data. This study uses a trained artificial neural network (ANN) model as a digital shadow to predict the force within the nozzle of an FFF printer using filament speed and nozzle temperatures as input data. After the ANN model was tested using data from a theoretical model it was implemented to predict the behavior using real-time printer data. For this purpose, an FFF printer was equipped with sensors that collect real time printer data during the printing process. The ANN model reflected the kinematics of melting and flow predicted by models currently available for various speeds of printing. The model allows for a deeper understanding of the influencing process parameters which ultimately results in the determination of the optimum combination of process speed and print quality.


2021 ◽  
Vol 77 (2) ◽  
pp. 98-108
Author(s):  
R. M. Churchill ◽  
C. S. Chang ◽  
J. Choi ◽  
J. Wong ◽  
S. Klasky ◽  
...  

2020 ◽  
pp. 1-19
Author(s):  
Fernando Cantú-Bazaldúa

World economic aggregates are compiled infrequently and released after considerable lags. There are, however, many potentially relevant series released in a timely manner and at a higher frequency that could provide significant information about the evolution of global aggregates. The challenge is then to extract the relevant information from this multitude of indicators and combine it to track the real-time evolution of the target variables. We develop a methodology based on dynamic factor models adapted for variables with heterogeneous frequencies, ragged ends and missing data. We apply this methodology to nowcast global trade in goods in goods and services. In addition to monitoring these variables in real time, this method can also be used to obtain short-term forecasts based on the most up-to-date values of the underlying indicators.


Sign in / Sign up

Export Citation Format

Share Document