scholarly journals New proteasome inhibitors in the management of multiple myeloma

2019 ◽  
Vol 14 (2) ◽  
pp. 29-40 ◽  
Author(s):  
S. V. Semochkin

The landscape of multiple myeloma treatment transformed at the last 15 years by the introduction of novel agents (bortezomib, lenalidomide) and wide application of autologous hematopoietic stem cell transplantation, which have prolonged the survival of multiple myeloma patients. Despite the fact that multiple myeloma remains an incurable disease due to the new options, the median overall survival of patients with multiple myeloma in Russia in 2006–2016 was about 55–68 months. Drug resistance and clonal evolution remain a problem. The novel proteasome inhibitors (carfilzomib, ixazomib) differ in chemical structure and pharmacological characteristics. Thereby the next-generation proteasome inhibitor (IPs)-based regimens (KRd (carfilzomib, lenalidomide, dexamethasone), IRd (ixazomib, lenalidomide, dexamethasone), and Kd (carfilzomib, dexamethasone)) are emerging as new standards for the treatment of patients with relapsed and/or refractory multiple myeloma. In a randomized trial phase 3 ENDEAVOR, carfilzomib demonstrated improved survival in direct comparison to bortezomib. The dose-dependent activity of carfilzomib demonstrated in the study of A.R.R.O.W. Аctivity of ixazomib is comparable to that of bortezomib, the oral method of administration and the absence of neurological toxicity, allow for long-term control of the disease. The new PIs are an important advance in relapsed and/or refractory multiple myeloma treatment, increasing survival, response rate and quality of life, even in subgroups of patients with poor prognosis. This review summarizes the main pharmacological properties, mechanisms of action and clinical outcomes of major clinical studies with these agents. A separate issue discusses the problem of overcoming new proteasome inhibitors of drug resistance to bortezomib.

Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 215
Author(s):  
Kazuhito Suzuki ◽  
Kaichi Nishiwaki ◽  
Shingo Yano

Multiple myeloma is an uncurable hematological malignancy because of obtained drug resistance. Microenvironment and clonal evolution induce myeloma cells to develop de novo and acquired drug resistance, respectively. Cell adhesion-mediated drug resistance, which is induced by the interaction between myeloma and bone marrow stromal cells, and soluble factor-mediated drug resistance, which is induced by cytokines and growth factors, are two types of de novo drug resistance. The microenvironment, including conditions such as hypoxia, vascular and endosteal niches, contributes toward de novo drug resistance. Clonal evolution was associated with acquired drug resistance and classified as branching, linear, and neutral evolutions. The branching evolution is dependent on the microenvironment and escape of immunological surveillance while the linear and neutral evolution is independent of the microenvironment and associated with aggressive recurrence and poor prognosis. Proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs), monoclonal antibody agents (MoAbs), and autologous stem cell transplantation (ASCT) have improved prognosis of myeloma via improvement of the microenvironment. The initial treatment plays the most important role considering de novo and acquired drug resistance and should contain PIs, IMIDs, MoAb and ASCT. This review summarizes the role of anti-myeloma agents for microenvironment and clonal evolution and treatment strategies to overcome drug resistance.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1221
Author(s):  
Raquel Lopes ◽  
Bruna Velosa Ferreira ◽  
Joana Caetano ◽  
Filipa Barahona ◽  
Emilie Arnault Carneiro ◽  
...  

Despite the improvement of patient’s outcome obtained by the current use of immunomodulatory drugs, proteasome inhibitors or anti-CD38 monoclonal antibodies, multiple myeloma (MM) remains an incurable disease. More recently, the testing in clinical trials of novel drugs such as anti-BCMA CAR-T cells, antibody–drug conjugates or bispecific antibodies broadened the possibility of improving patients’ survival. However, thus far, these treatment strategies have not been able to steadily eliminate all malignant cells, and the aim has been to induce a long-term complete response with minimal residual disease (MRD)-negative status. In this sense, approaches that target not only myeloma cells but also the surrounding microenvironment are promising strategies to achieve a sustained MRD negativity with prolonged survival. This review provides an overview of current and future strategies used for immunomodulation of MM focusing on the impact on bone marrow (BM) immunome.


2021 ◽  
pp. 107815522199553
Author(s):  
Joshua Richter ◽  
Vamshi Ruthwik Anupindi ◽  
Jason Yeaw ◽  
Suneel Kudaravalli ◽  
Stojan Zavisic ◽  
...  

Introduction Real-world evidence on later line treatment of relapsed/refractory multiple myeloma (RRMM) is sparse. We evaluated clinical outcomes among RRMM patients in the 1-year following treatment with pomalidomide or daratumumab and compared economic outcomes between RRMM patients and non-MM patients. Patient and Methods Adult patients with ≥1 claim of pomalidomide or daratumumab were identified between January 2012 and February 2018 using IQVIA PharMetrics® Plus US claims database. Patients were required to have a diagnosis or treatment for MM and a claim of any immunomodulatory drugs and proteasome inhibitors before the index date. Mean time to new therapy, overall survival (OS) using Kaplan-Meier curve and adverse events (AEs) were reported over the 1-year post-index period. RRMM patients were also matched to a non-MM comparator cohort and economic outcomes were compared between the two cohorts. Results 289 RRMM patients were matched to 1,445 patients without MM. Most prevalent hematological AE was anemia (72.0%) and non-hematological AE was infections (75.4%). Mean (SD) time to a new treatment was 4.7 (5.3) months and median OS was 14.6 months. RRMM patients had significantly higher hospitalizations and physician office visits (Both P < .0001) compared to non-MM patients. Adjusting for baseline characteristics, patients with RRMM had 4.9 times (95% CI 3.8-6.4, P < .0001) the total healthcare costs compared with patients without MM. The major driver of total costs among RRMM patients was pharmacy costs (67.3%). Conclusion RRMM patients showed a high frequency of AEs, low OS, and a substantial economic burden suggesting need for effective treatment options.


2021 ◽  
Vol 12 ◽  
pp. 204062072110196
Author(s):  
Albert Oriol ◽  
Laura Abril ◽  
Anna Torrent ◽  
Gladys Ibarra ◽  
Josep-Maria Ribera

The development of several treatment options over the last 2 decades has led to a notable improvement in the survival of patients with multiple myeloma. Despite these advances, the disease remains incurable for most patients. Moreover, standard combinations of alkylating agents, immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies targeting CD38 and corticoids are exhausted relatively fast in a proportion of high-risk patients. Such high-risk patients account for over 20% of cases and currently represent a major unmet medical need. The challenge of drug resistance requires the development of highly active new agents with a radically different mechanism of action. Several immunotherapeutic modalities, including antibody–drug conjugates and T-cell engagers, appear to be promising choices for patients who develop resistance to standard combinations. Chimeric antigen-receptor-modified T cells (CAR-Ts) targeting B-cell maturation antigen have demonstrated encouraging efficacy and an acceptable safety profile compared with alternative options. Multiple CAR-Ts are in early stages of clinical development, but the first phase III trials with CAR-Ts are ongoing for two of them. After the recent publication of the results of a phase II trial confirming a notable efficacy and acceptable safety profile, idecabtagene vicleucel is the first CAR-T to gain regulatory US Food and Drug Administration approval to treat refractory multiple myeloma patients who have already been exposed to antibodies against CD38, proteasome inhibitors, and immunomodulatory agents and who are refractory to the last therapy. Here, we will discuss the preclinical and clinical development of idecabtagene vicleucel and its future role in the changing treatment landscape of relapsed and refractory multiple myeloma.


Author(s):  
Sini Luoma ◽  
Raija Silvennoinen ◽  
Auvo Rauhala ◽  
Riitta Niittyvuopio ◽  
Eeva Martelin ◽  
...  

AbstractThe role of allogeneic hematopoietic stem cell transplantation (allo-SCT) in multiple myeloma is controversial. We analyzed the results of 205 patients transplanted in one center during 2000–2017. Transplantation was performed on 75 patients without a previous autologous SCT (upfront-allo), on 74 as tandem transplant (auto-allo), and on 56 patients after relapse. Median overall survival (OS) was 9.9 years for upfront-allo, 11.2 years for auto-allo, and 3.9 years for the relapse group (p = 0.015). Progression-free survival (PFS) was 2.4, 2.4, and 0.9 years, respectively (p < 0.001). Non-relapse mortality at 5 years was 8% overall, with no significant difference between the groups. Post-relapse survival was 4.1 years for upfront-allo and auto-allo, and 2.6 years for the relapse group (p = 0.066). Survival of high-risk patients was reduced. In multivariate analysis, the auto-allo group had improved OS and chronic graft-versus-host disease was advantageous in terms of PFS, OS, and relapse incidence. Late relapses occurred in all groups. Allo-SCT resulted in long-term survival in a small subgroup of patients. Our results indicate that auto-allo-SCT is feasible and could be considered for younger patients in the upfront setting.


Hematology ◽  
2016 ◽  
Vol 2016 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Régis Peffault de Latour

Abstract The preferred treatment of idiopathic aplastic anemia (AA) is allogeneic hematopoietic stem cell transplantation (HSCT) from a human leukocyte antigen (HLA)–identical sibling donor. Transplantation from a well-matched unrelated donor (MUD) may be considered for patients without a sibling donor after failure of immunosuppressive therapy, as may alternative transplantation (mismatched, cord blood or haplo-identical HSCT) for patients without a MUD. HSCT may also be contemplated for congenital disorders in cases of pancytopenia or severe isolated cytopenia. Currently, HSCT aims are not only to cure patients but also to avoid long-term complications, notably chronic graft-versus-host disease (GVHD), essential for a good quality of life long term. This paper summarizes recent advances in HSCT for idiopathic and inherited AA disorders. The effect of age on current transplantation outcomes, the role of transplantation in paroxysmal nocturnal hemoglobinuria, and the prevention of GVHD are also discussed. Emerging strategies regarding the role of up-front unrelated donor and alternative donor HSCT in idiopathic AA, along with advances in the treatment of clonal evolution in Fanconi anemia, are also examined.


2014 ◽  
Vol 93 (12) ◽  
pp. 1993-1999 ◽  
Author(s):  
Manola Zago ◽  
Katharina Oehrlein ◽  
Corinna Rendl ◽  
Corinna Hahn-Ast ◽  
Lothar Kanz ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5582-5582
Author(s):  
Florian Lignet ◽  
Christina Esdar ◽  
Manja Friese-Hamim ◽  
Andreas Becker ◽  
Elise Drouin ◽  
...  

M3258 is an orally bioavailable, potent, selective, reversible inhibitor of the large multifunctional peptidase 7 (LMP7, β5i, PSMB8) proteolytic subunit of the immunoproteasome; a crucial component of the cellular protein degradation machinery, which is highly expressed in malignant hematopoietic cells including multiple myeloma. M3258 was previously shown to deliver strong in vivo preclinical efficacy in multiple myeloma xenograft models, as well as a more benign non-clinical safety profile compared to approved pan-proteasome inhibitors, exemplified by a lack of effects on the central and peripheral nervous systems and cardiac and respiratory organs. Here we describe preclinical PK/PD and PK/efficacy modelling which led to a prediction of the PK profile, and the efficacious and safe dose ranges of M3258 in human which were used to guide the design of the phase I dose-escalation trial of M3258 in >3 line relapsed/refractory multiple myeloma (RRMM) patients. Mouse, rat, dog and monkey PK, plasma protein binding and intrinsic clearance data were used to estimate a half-life of approximately 6 hours for M3258 in human. The human total clearance and volume of distribution for M3258 were predicted to be 0.033 L/h/kg and 0.28 L/kg, respectively, whilst oral bioavailability was estimated to be above 80%. LMP7 proteolytic activity was assessed as a PD readout in human multiple myeloma tumor cells xenografted to mice as well as in dog peripheral blood mononuclear cells (PBMCs). A strong PK/PD relationship was observed for M3258 across both species. LMP7 inhibition by M3258 also correlated strongly with anti-tumor efficacy in multiple myeloma xenografts, with maximal efficacy observed at M3258 exposure delivering sustained inhibition of tumor LMP7 activity. Quantitative PK/PD/efficacy modeling predicted the biologically efficacious dose (BED) of M3258 upon oral application to be between 10 - 90 mg daily in human. By incorporating data from nonclinical safety studies, these data suggest an attractive human PK profile of M3258, enabling oral application, as well as an improved human therapeutic index compared to approved pan-proteasome inhibitors. M3258 is being investigated in a phase I, first-in-man, 2-part, open label clinical study designed to determine the safety, tolerability, PK, PD and early signs of efficacy of M3258 as a single agent (dose-escalation) and co-administered with dexamethasone (dose-expansion) in participants with RRMM whose disease has progressed following > 3 prior lines of therapy and for whom no effective standard therapy exists. Integration of these data will guide the selection of the BED for potential further clinical development of M3258. Disclosures Lignet: Merck Healthcare KGaA: Employment. Esdar:Merck Healthcare KGaA: Employment. Friese-Hamim:Merck Healthcare KGaA: Employment. Becker:Merck Healthcare KGaA: Employment, Other: Holding shares with a value below 1000-USD. Drouin:EMD Serono Research and Development Institute: Employment. El Bawab:Merck Healthcare KGaA: Employment. Goodstal:EMD Serono Research and Development Institute: Employment. Gimmi:Merck Healthcare KGaA: Employment. Haselmayer:Merck Healthcare KGaA: Employment. Jährling:Merck Healthcare KGaA: Employment. Sanderson:Merck Healthcare KGaA: Employment. Sloot:Merck Healthcare KGaA: Employment. Stinchi:Merck Healthcare KGaA: Employment. Victor:Merck Healthcare KGaA: Employment. Walter:Merck Healthcare KGaA: Employment. Rohdich:Merck Healthcare KGaA: Employment.


2020 ◽  
Vol 43 (9) ◽  
pp. 449-459 ◽  
Author(s):  
H. Tilman Steinmetz ◽  
Moushmi Singh ◽  
Andrea Lebioda ◽  
Sebastian Gonzalez-McQuire ◽  
Achim Rieth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document