scholarly journals Differences in the profile of cytokine expression induced by implantation of oncogenic and non-oncogenic millipore filters

2019 ◽  
Vol 6 (3) ◽  
pp. 57-62
Author(s):  
E. Yu. Rybalkina ◽  
O. Yu. Susova ◽  
T. G. Moizhess

Background. Clarification of the mechanisms of carcinogenesis induced by foreign bodies is one of the urgent problems of modern oncology. This is due to the fact that there is a relationship between the processes of inflammation and carcinogenesis. Today, there is no doubt the fact that cytokines and signal molecules in the focus of inflammation (products of inflammation) can contribute to the initiation of carcinogenesis, as well as stimulate tumor progression. In the case of carcinogenesis induced by foreign bodies, the key issue is understanding the differences in the body’s response to the implantation of foreign bodies that can cause tumor formation and do not have this ability. One of the phenomena of this type of carcinogenesis is the occurrence of sarcoma after the subcutaneous implantation in mice of hydrophilic millipore filters with a pore diameter not exceeding 0.1 μm and the inability to induce tumors of one’s with a pore diameter greater than or equal to 0.22 μm.The objective of our work was to study the differences between oncogenic and non-oncogenic filters at the molecular level.Materials and methods. Reverse transcription polymerase chain reaction method was used to study the expression of a number of cytokines that are products of macrophage cells that live on the surface of implanted filters and in the surrounding capsule. Filters with pore diameters of 0.025 μm (carcinogenic) and 0.45 μm (non-carcinogenic) were compared in 8, 35 days and 5.5 months after implantation.Results and conclusion. After 8 days we observed significant (p <0.01) excess of expression of two cytokines interleukin 1β (IL-1β) by cells around oncogenic filters (with pore of 0.025 μm) compared to non-oncogenic one’s (with pore of 0.45 μm) After 35 days, significant (p <0.01) excess of expression of IL-1β, Tnf-α, iNOS (induced nitric oxide synthase), and IL-6 by cells around the oncogenic filters (0.025 μm) compared to non-oncogenic one’s (0.45 μm) was observed. There was no quantitative difference in the expression of Nf-κB1 and Nf-κB2 (nuclear factor κ-B1, κ-B2), Tgf-β (transforming growth factor β), IL-10. After 5.5 months the expression of IL-1β by cells on oncogenic filters was still significant; for Tnf-α, iNOS, IL-6 and IL-10 there was no practically difference in expression. For Nf-κB1 and Nf-κB2, Tgf-β and COX-2 (cyclooxygenase 2) the difference was significant, cells on non-oncogenic filters are expressed more then on oncogenic one’s.

2022 ◽  
Vol 12 ◽  
Author(s):  
Zhi-wei Liu ◽  
Yi-ming Zhang ◽  
Li-ying Zhang ◽  
Ting Zhou ◽  
Yang-yang Li ◽  
...  

The tumor microenvironment is essential for the formation and development of tumors. Cytokines in the microenvironment may affect the growth, metastasis and prognosis of tumors, and play different roles in different stages of tumors, of which transforming growth factor β (TGF-β) and tumor necrosis factor α (TNF-α) are critical. The two have synergistic and antagonistic effect on tumor regulation. The inhibition of TGF-β can promote the formation rate of tumor, while TGF-β can promote the malignancy of tumor. TNF-α was initially determined to be a natural immune serum mediator that can induce tumor hemorrhagic necrosis, it has a wide range of biological activities and can be used clinically as a target to immune diseases as well as tumors. However, there are few reports on the interaction between the two in the tumor microenvironment. This paper combs the biological effect of the two in different aspects of different tumors. We summarized the changes and clinical medication rules of the two in different tissue cells, hoping to provide a new idea for the clinical application of the two cytokines.


Author(s):  
Theresia Indah Budhy ◽  
Ira Arundina ◽  
Meircurius Dwi Condro Surboyo ◽  
Anisa Nur Halimah

Abstract Objectives The purpose of this study is to analyze the effects of rice husk liquid smoke in Porphyromonas gingivalis-induced periodontitis in the inflammatory and proliferation marker such as nuclear factor kappa β (NF-kB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), transforming growth factor-β (TGF-β), fibroblast growth factor 2 (FGF2), collagen type 1 (COL-1) expression, and the number of macrophages, lymphocytes, and fibroblasts. Materials and Methods Rice husk liquid smoke is obtained by the pyrolysis process. Porphyromonas gingivalis-induced periodontitis in 20 μL phosphate-buffered saline containing 1 × 109 CFU was injected into the lower anterior gingival sulcus of Wistar rats. The periodontitis was then treated with 20 μL/20 g body weight of rice husk liquid smoke once a day for 2 and 7 days, respectively. After treatment, the bone and lower anterior gingival sulcus were analyzed with immunohistochemistry and hematoxylin–eosin staining. Results The treatment of periodontitis with rice husk liquid smoke showed a lower NF-kB, TNF-α, and IL-6 expression and a higher TGF-β, FGF2, and COL-1 expression than the control after treatment for 2 and 7 days (p < 0.05), respectively. The number of macrophages and fibroblasts was also higher when compared with the control group (p < 0.05), but the number of lymphocytes was lower than the control (p < 0.05). Conclusion Rice husk liquid smoke showed its effects on Porphyromonas gingivalis-induced periodontitis with a decrease in inflammatory markers and an increase in proliferation markers. The development of a rice husk liquid smoke periodontitis treatment is promising.


2001 ◽  
Vol 86 (12) ◽  
pp. 1563-1572 ◽  
Author(s):  
Yan Chen ◽  
Joanne Sloan-Lancaster ◽  
David Berg ◽  
Mark Richardson ◽  
Brian Grinnell ◽  
...  

SummaryPlasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor (SERPIN) specific for tissue-type and urokinase-like plasminogen activators. High plasma PAI-1 activity is a risk factor for thrombotic diseases. Due to the short half-life of PAI-1, regulation of PAI-1 gene expression and secretion of active PAI-1 into the blood stream is important for hemostatic balance. We have investigated transcriptional control of PAI-1 gene expression in bovine aortic endothelial cells (BAECs) and human cell lines using PAI-1 5’ promoter-luciferase reporter assays. Contrary to the cytokine-induced up-regulation of PAI-1 mRNA and protein levels, we found that only transforming growth factor-β (TGF-β) was efficient in inducing PAI-1 promoter activation. Tissue necrosis factor-α (TNF-α) induced a small luciferase activity with the 2.5 kb PAI-1 promoter, but not with the PAI-800/4G/5G and p3TP-lux promoters. Next we investigated whether a lack of response to TNF-α was due to deficient signaling pathways. BAECs responded to TNF-α with robust NFκB promoter activation. TGF-β activated the p38 MAP kinase, while TNF-α activated both the SAPK/JNK and p38 MAP kinases. The ERK1/2 MAP kinases were constitutively activated in BAECs. BAEC therefore responded to TNF-α stimulation with activation of the MAP kinases and the NFκB transcriptional factors. We further measured the messenger RNA stability under the influence by TGF-β and TNF-α and found no difference. PAI-1 gene activation by TNF-α apparently is yet to be defined for the location of the response element and/or the signaling pathway, while TGF-β is the most important cytokine for PAI-1 transcriptional activation through its 5’ proximal promoter.


2001 ◽  
Vol 90 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Jeffrey D. Hasday ◽  
Douglas Bannerman ◽  
Sirhan Sakarya ◽  
Alan S. Cross ◽  
Ishwar S. Singh ◽  
...  

Fever is an important regulator of inflammation that modifies expression and bioactivity of cytokines, including tumor necrosis factor (TNF)-α. Pulmonary vascular endothelium is an important target of TNF-α during the systemic inflammatory response. In this study, we analyzed the effect of a febrile range temperature (39.5°C) on TNF-α-stimulated changes in endothelial barrier function, capacity for neutrophil binding and transendothelial migration (TEM), and cytokine secretion in human pulmonary artery endothelial cells (EC). Permeability for [14C]BSA tracer was increased by treatment with TNF-α, and this effect was augmented by incubating EC at 39.5°C. Treating EC with 2.5 U/ml TNF-α stimulated an increase in subsequent neutrophil adherence and TEM. Incubating EC at 39.5°C caused a 30% increase in TEM but did not modify the enhancement of neutrophil adherence or TEM by TNF-α treatment. Analysis of cytokine expression in EC cultures exposed to TNF-α at either 37° or 39.5°C revealed three patterns of temperature and TNF-α responsiveness. Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin (IL)-8 were not detectable in untreated EC but were increased after TNF-α exposure, and this increase was enhanced at 39.5°C. IL-6 expression was also increased with TNF-α exposure, but IL-6 expression was lower in 39.5°C EC cultures. Transforming growth factor-β1was constitutively expressed, and its expression was not influenced either by TNF-α or exposure to 39.5°C. These data demonstrate that clinically relevant shifts in body temperature might cause important changes in the effects of proinflammatory cytokines on the endothelium.


2004 ◽  
Vol 287 (1) ◽  
pp. G264-G273 ◽  
Author(s):  
Atul Sahai ◽  
Padmini Malladi ◽  
Hector Melin-Aldana ◽  
Richard M. Green ◽  
Peter F. Whitington

The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly defined. Feeding mice a diet deficient in methionine and choline (MCD diet) induces experimental NASH. Osteopontin (OPN) is a Th1 cytokine that plays an important role in several fibroinflammatory diseases. We examined the role of OPN in the development of experimental NASH. A/J mice were fed MCD or control diet for up to 12 wk, and serum alanine aminotransferase (ALT), liver histology, oxidative stress, and the expressions of OPN, TNF-α, and collagen I were assessed at various time points. MCD diet-fed mice developed hepatic steatosis starting after 1 wk and inflammation by 2 wk; serum ALT increased from day 3. Hepatic collagen I mRNA expression increased during 1–4 wk, and fibrosis appeared at 8 wk. OPN protein expression was markedly increased on day 1 of MCD diet and persisted up to 8 wk, whereas OPN mRNA expression was increased at week 4. TNF-α expression was increased from day 3 to 2 wk, and evidence of oxidative stress did not appear until 8 wk. Increased expression of OPN was predominantly localized in hepatocytes. Hepatocytes in culture also produced OPN, which was stimulated by transforming growth factor-β and TNF-α. Moreover, MCD diet-induced increases in serum ALT levels, hepatic inflammation, and fibrosis were markedly reduced in OPN−/− mice when compared with OPN+/+ mice. In conclusion, our results demonstrate an upregulation of OPN expression early in the development of steatohepatitis and suggest an important role for OPN in signaling the onset of liver injury and fibrosis in experimental NASH.


2000 ◽  
Vol 14 (2) ◽  
pp. 187-197 ◽  
Author(s):  
Markus Bitzer ◽  
Gero von Gersdorff ◽  
Dan Liang ◽  
Alfredo Dominguez-Rosales ◽  
Amer A. Beg ◽  
...  

A number of pathogenic and proinflammatory stimuli, and the transforming growth factor-β (TGF-β) exert opposing activities in cellular and immune responses. Here we show that the RelA subunit of nuclear factor κB (NF-κB/RelA) is necessary for the inhibition of TGF-β-induced phosphorylation, nuclear translocation, and DNA binding of SMAD signaling complexes by tumor necrosis factor-α (TNF-α). The antagonism is mediated through up-regulation of Smad7 synthesis and induction of stable associations between ligand-activated TGF-β receptors and inhibitory Smad7. Down-regulation of endogenous Smad7 by expression of antisense mRNA releases TGF-β/SMAD-induced transcriptional responses from suppression by cytokine-activated NF-κB/RelA. Following stimulation with bacterial lipopolysaccharide (LPS), or the proinflammatory cytokines TNF-α and interleukin-1β (IL-1β, NF-κB/RelA induces Smad7 synthesis through activation of Smad7 gene transcription. These results suggest a mechanism of suppression of TGF-β/SMAD signaling by opposing stimuli mediated through the activation of inhibitory Smad7 by NF-κB/RelA.


2017 ◽  
Vol 1 (5) ◽  
pp. 487-492
Author(s):  
Hee Joon Bae ◽  
Shutong Liu ◽  
Ping Jin ◽  
David Stroncek

Mesenchymal stem cells or mesenchymal stromal cells (MSCs) are a multipotent, heterogeneous population of cells that play a critical role in wound healing and tissue regeneration. MSCs, found in the tumor microenvironment, support tumor growth through the production of angiogenic factors, growth factors and extracellular matrix proteins. They also have immunomodulatory properties, and since they produce indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2) and transforming growth factor β (TGF-β), they have been thought to have primarily immunosuppressive effects. However, their role in the tumor microenvironment is complex and demonstrates plasticity depending on location, stimulatory factors and environment. The presence of melanoma-activated tumor-infiltrating lymphocytes (TILs) has been shown to produce pro-inflammatory changes with TH1 (type 1T helper)-like phenotype in MSCs via activated-TIL released cytokines such as interferon γ (IFN-γ), tumor necrosis factor α (TNF-α) and interleukin-1α (IL-1α), while simultaneously producing factors, such as IDO1, which have been traditionally associated with immunosuppression. Similarly, the combination of IFN-γ and TNF-α polarizes MSCs to a primarily TH1-like phenotype with the expression of immunosuppressive factors. Ultimately, further studies are encouraged and needed for a greater understanding of the role of MSCs in the tumor microenvironment and to improve cancer immunotherapy.


2008 ◽  
Vol 27 (12) ◽  
pp. 871-877 ◽  
Author(s):  
OC Ulker ◽  
B Yucesoy ◽  
O Demir ◽  
IO Tekin ◽  
A Karakaya

Coal workers’ pneumoconiosis (CWP) is an occupational pulmonary disease that occurs by chronic inhalation of coal dust. CWP is divided into two stages depending on the extent of the disease, as simple pneumoconiosis (SP) and progressive massive fibrosis (PMF). In the present study, serum and bronchoalveolar lavage (BAL) cytokine (interleukin-1β [IL-1β], IL-6, tumor necrosis factor-α [TNF-α], transforming growth factor-β [TGF-β]) and antioxidant enzymes levels, their relation with the disease severity, and whether they can be considered as biological markers were investigated. Serum and BAL levels of IL-1β, IL-6, and TNF-α were higher in SP and PMF patient groups compared with that in active and retired miner groups. Serum and BAL IL-1β, IL-6, and TNF-α levels were also found to be higher in patients with PMF compared with the SP group. BAL superoxide dismutase (SOD), glutathione peroxidase, and catalase levels and serum SOD level were increased in both patient groups compared with the control group. In addition, mean serum and BAL TGF-β levels were found to be increased in patients with SP compared with PMF group. Based on these results, BAL and serum cytokine and antioxidant enzymes levels were evaluated and discussed as potential biomarkers for different stages of CWP.


2013 ◽  
Vol 94 (12) ◽  
pp. 2679-2690 ◽  
Author(s):  
Susanna K. P. Lau ◽  
Candy C. Y. Lau ◽  
Kwok-Hung Chan ◽  
Clara P. Y. Li ◽  
Honglin Chen ◽  
...  

The high mortality associated with the novel Middle East respiratory syndrome coronavirus (MERS-CoV) has raised questions about the possible role of a cytokine storm in its pathogenesis. Although recent studies showed that MERS-CoV infection is associated with an attenuated IFN response, no induction of inflammatory cytokines was demonstrated during the early phase of infection. To study both early and late cytokine responses associated with MERS-CoV infection, we measured the mRNA levels of eight cytokine genes [TNF-α, IL-1β, IL-6, IL-8, IFN-β, monocyte chemotactic protein-1, transforming growth factor-β and IFN-γ-induced protein (IP)-10] in cell lysates of polarized airway epithelial Calu-3 cells infected with MERS-CoV or severe acute respiratory syndrome (SARS)-CoV up to 30 h post-infection. Among the eight cytokine genes, IL-1β, IL-6 and IL-8 induced by MERS-CoV were markedly higher than those induced by SARS-CoV at 30 h, whilst TNF-α, IFN-β and IP-10 induced by SARS-CoV were markedly higher than those induced by MERS-CoV at 24 and 30 h in infected Calu-3 cells. The activation of IL-8 and attenuated IFN-β response by MERS-CoV were also confirmed by protein measurements in the culture supernatant when compared with SARS-CoV and Sendai virus. To further confirm the attenuated antiviral response, cytokine response was compared with human HCoV-229E in embryonal lung fibroblast HFL cells, which also revealed higher IFN-β and IP-10 levels induced by HCoV-229E than MERS-CoV at 24 and 30 h. Whilst our data supported recent findings that MERS-CoV elicits attenuated innate immunity, this represents the first report to demonstrate delayed proinflammatory cytokine induction by MERS-CoV. Our results provide insights into the pathogenesis and treatment of MERS-CoV infections.


Sign in / Sign up

Export Citation Format

Share Document