RELATIONSHIP BETWEEN NET PHOTOSYNTHETIC RATE AND PHOTOSYNTHETIC PARAMETERS FOR JUGLANS HOPEIENSIS HU 'YIHE 1'

2010 ◽  
pp. 303-308
Author(s):  
H. Wang ◽  
Z. Zhang ◽  
Y. Gao ◽  
Y. Zhao ◽  
S. Zhao ◽  
...  
Weed Science ◽  
1987 ◽  
Vol 35 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Philip H. Munger ◽  
James M. Chandler ◽  
J. Tom Cothren

Greenhouse experiments were conducted to elucidate the effects of water stress on photosynthetic parameters of soybean [Glycine max(L.) Merr. ‘Hutton′] and velvetleaf (Abutilon theophrastiMedik. # ABUTH). Stomatal conductance of both species responded curvilinearly to reductions in leaf water potential. At leaf water potentials less negative than −2.5 MPa, stomatal conductance, net photosynthetic rate, and transpiration rate were greater in velvetleaf than in soybean. Soybean photosynthetic rate was linearly related to stomatal conductance. Velvetleaf photosynthetic rate increased linearly with stomatal conductances up to 1.5 cm s–1; however, no increase in photosynthetic rate was observed at stomatal conductances greater than 1.5 cm s–1, indicating nonstomatal limitations to photosynthesis. As water stress intensified, stomatal conductance, photosynthetic rate, and transpiration of velvetleaf declined more rapidly than in soybean.


Author(s):  
Bilge Yılmaz ◽  
Berken Çimen ◽  
Müge Uysal Kamiloğlu ◽  
Meral İncesu ◽  
Turgut Yeşiloğlu ◽  
...  

In this study, Minneola Tangelo hybrid, a cross of grapefruit and mandarin (Duncan grapefruit x Dancy mandarin), used as interstock to Star Ruby grapefruit with different lengths. Effects of different interstock lengths on fruit yield and quality, plant development and photosynthetic parameters were investigated. According to the results, different interstock lengths significantly affected fruit yield and size. The highest fruit yield was determined in T-M20-S whereas the lowest was on T-M5-S. The highest fruit size were determined in Star Ruby fruits on T-M5-S and T-M40-S whereas the lowest on T-M20-S and T-S (control). T-M40-S and T-M20-S treatments markedly reduced stem diameter and tree canopy in comparison to other treatments and control. Usage of different interstock lengths did not significantly affected some of fruit quality traits, net photosynthetic rate, stomatal conductance, leaf transpiration rate, leaf water usage efficiency and leaf chlorophyll concentration. In regards to seasonal changes, net photosynthetic rate were higher in spring and summer seasons then winter and fall seasons.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunyun Chen ◽  
Hongwei Xu ◽  
Ting He ◽  
Runhong Gao ◽  
Guimei Guo ◽  
...  

Polyploids play an important role in the breeding of plant for superior characteristics, and many reports have focused on the effects upon photosynthesis from polyploidization in some plant species recently, yet surprisingly little of this is known for barley. In this study, homozygous diploid and tetraploid plants, derived from microspore culturing of the barley cultivar “H30,” were used to assess differences between them in their cellular, photosynthetic, and transcriptomic characteristics. Our results showed that tetraploid barley has the distinct characteristics of polyploids, namely thicker and heavier leaves, enlarged stomata size or stomatal guard cell size, and more photosynthetic pigments and improved photosynthesis (especially under high light intensity). This enhanced photosynthesis of tetraploid barley was confirmed by several photosynthetic parameters, including net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), maximum net photosynthetic rate (Pmax), light saturation point (LSP), maximum RuBP saturated rate carboxylation (Vcmax), and maximum rate of electron transport (Jmax). Transcriptomic analyses revealed that just ~2.3% of all detected genes exhibited differential expression patterns [i.e., differentially expressed genes (DEGs)], and that most of these – 580 of 793 DEGs in total – were upregulated in the tetraploid barley. The follow-up KEGG analysis indicated that the most enriched pathway was related to photosynthesis-antenna proteins, while the downregulation of DEGs was related mainly to the light-harvesting cholorophyII a/b-binding protein (Lhcb1) component, both validated by quantitative PCR (qPCR). Taken together, our integrated analysis of morphology, photosynthetic physiology, and transcriptome provides evidences for understanding of how polyploidization enhances the photosynthetic capacity in tetraploids of barley.


2009 ◽  
Vol 17 (3) ◽  
pp. 474-478
Author(s):  
Qun-Long LIU ◽  
Chan-Juan NING ◽  
Duo WANG ◽  
Guo-Liang WU ◽  
Hong-Mei ZHANG ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinli Bi ◽  
Huili Zhou

AbstractA well-developed canopy structure can increase the biomass accumulation and yield of crops. Peanut seeds were sown in a soil inoculated with an arbuscular mycorrhizal fungus (AMF) and uninoculated controls were also sown. Canopy structure was monitored using a 3-D laser scanner and photosynthetic characteristics with an LI-6400 XT photosynthesis system after 30, 45 and 70 days of growth to explore the effects of the AMF on growth, canopy structure and photosynthetic characteristics and yield. The AMF colonized the roots and AMF inoculation significantly increased the height, canopy width and total leaf area of the host plants and improved canopy structure. AMF reduced the tiller angle of the upper and middle canopy layers, increased that of the lower layer, reduced the leaf inclination of the upper, middle and lower layers, and increased the average leaf area and leaf area index after 45 days of growth, producing a well-developed and hierarchical canopy. Moreover, AMF inoculation increased the net photosynthetic rate in the upper, middle and lower layers. Plant height, canopy width, and total leaf area were positively correlated with net photosynthetic rate, and the inclination angle and tiller angle of the upper leaves were negatively correlated with net photosynthetic rate. Overall, the results demonstrate the effects of AMF inoculation on plant canopy structure and net photosynthetic rate.


Author(s):  
Junyao Lyu ◽  
Feng Xiong ◽  
Ningxiao Sun ◽  
Yiheng Li ◽  
Chunjiang Liu ◽  
...  

Volatile organic compound (VOCs) emission is an important cause of photochemical smog and particulate pollution in urban areas, and urban vegetation has been presented as an important source. Different tree species have different emission levels, so adjusting greening species collocation is an effective way to control biogenic VOC pollution. However, there is a lack of measurements of tree species emission in subtropical metropolises, and the factors influencing the species-specific differences need to be further clarified. This study applied an in situ method to investigate the isoprene emission rates of 10 typical tree species in subtropical metropolises. Photosynthesis and related parameters including photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate, which can influence the emission rate of a single species, were also measured. Results showed Salix babylonica always exhibited a high emission level, whereas Elaeocarpus decipiens and Ligustrum lucidum maintained a low level throughout the year. Differences in photosynthetic rate and stomatal CO2 conductance are the key parameters related to isoprene emission among different plants. Through the establishment of emission inventory and determination of key photosynthetic parameters, the results provide a reference for the selection of urban greening species, as well as seasonal pollution control, and help to alleviate VOC pollution caused by urban forests.


Plant Science ◽  
2005 ◽  
Vol 169 (3) ◽  
pp. 523-531 ◽  
Author(s):  
K. Mosaleeyanon ◽  
S.M.A. Zobayed ◽  
F. Afreen ◽  
T. Kozai

Sign in / Sign up

Export Citation Format

Share Document