CANOPY TEMPERATURE AS AN INDICATOR OF WATER STATUS IN CITRUS TREES

2011 ◽  
pp. 347-353 ◽  
Author(s):  
F. Stagno ◽  
A. Giuffrida ◽  
F. Intrigliolo
Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2780
Author(s):  
Victor Blanco ◽  
Lee Kalcsits

Stem water potential (Ψstem) is considered to be the standard measure of plant water status. However, it is measured with the pressure chamber (PC), an equipment that can neither provide continuous information nor be automated, limiting its use. Recent developments of microtensiometers (MT; FloraPulse sensors), which can continuously measure water tension in woody tissue of the trunk of the tree, can potentially highlight the dynamic nature of plant water relations. Thus, this study aimed to validate and assess the usefulness of the MT by comparing the Ψstem provided by MT with those same measurements from the PC. Here, two irrigation treatments (a control and a deficit treatment) were applied in a pear (Pyrus communis L.) orchard in Washington State (USA) to capture the full range of water potentials in this environment. Discrete measurements of leaf gas exchange, canopy temperature and Ψstem measured with PC and MT were made every two hours for four days from dawn to sunset. There were strong linear relationships between the Ψstem-MT and Ψstem-PC (R2 > 0.8) and with vapor pressure deficit (R2 > 0.7). However, Ψstem-MT was more variable and lower than Ψstem-PC when Ψstem-MT was below −1.5 MPa, especially during the evening. Minimum Ψstem-MT occurred later in the afternoon compared to Ψstem-PC. Ψstem showed similar sensitivity and coefficients of variation for both PC and MT acquired data. Overall, the promising results achieved indicated the potential for MT to be used to continuously assess tree water status.


2017 ◽  
Vol 8 (2) ◽  
pp. 520-524
Author(s):  
S. Gutiérrez ◽  
M. P. Diago ◽  
J. Fernández-Novales ◽  
J. Tardaguila

The goal of this work was the assessment of commercial vineyard water status using on-the-go thermal imaging. On-the-go thermal imaging acquisition was conducted with a thermal camera operating at 1.20 m distance from the canopy, mounted on a quad moving at 5 km/h. Canopy temperature, cross water stress index (CWSI) and stomatal conductance index (Ig) were strongly and significantly correlated to stem water potential (Ψstem) in east and west side of the canopy. For CWSI, the values of the coefficient of determination (R2) were 0.88*** and 0.73*** for east and west sides, respectively. As regards the index Ig, its relationships with Ψstem showed R2=0.89*** and R2=0.77*** for east and west sides, respectively. These results are promising and evidence the potential of on-the-go thermal imaging to become a new tool to evaluate the vineyard water status.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2676 ◽  
Author(s):  
Sebastián Romero-Bravo ◽  
Ana María Méndez-Espinoza ◽  
Miguel Garriga ◽  
Félix Estrada ◽  
Alejandro Escobar ◽  
...  

Canopy temperature (Tc) by thermal imaging is a useful tool to study plant water status and estimate other crop traits. This work seeks to estimate grain yield (GY) and carbon discrimination (Δ13C) from stress degree day (SDD = Tc − air temperature, Ta), considering the effect of a number of environmental variables such as the averages of the maximum vapor pressure deficit (VPDmax) and the ambient temperature (Tmax), and the soil water content (SWC). For this, a set of 384 and a subset of 16 genotypes of spring bread wheat were evaluated in two Mediterranean-climate sites under water stress (WS) and full irrigation (FI) conditions, in 2011 and 2012, and 2014 and 2015, respectively. The relationship between the GY of the 384 wheat genotypes and SDD was negative and highly significant in 2011 (r2 = 0.52 to 0.68), but not significant in 2012 (r2 = 0.03 to 0.12). Under WS, the average GY, Δ13C, and SDD of wheat genotypes growing in ten environments were more associated with changes in VPDmax and Tmax than with the SWC. Therefore, the amount of water available to the plant is not enough information to assume that a particular genotype is experiencing a stress condition.


2020 ◽  
Author(s):  
Angela Morales Santos ◽  
Reinhard Nolz

<p>Sustainable irrigation water management is expected to accurately meet crop water requirements in order to avoid stress and, consequently, yield reduction, and at the same time avoid losses of water and nutrients due to deep percolation and leaching. Sensors to monitor soil water status and plant water status (in terms of canopy temperature) can help planning irrigation with respect to time and amounts accordingly. The presented study aimed at quantifying and comparing crop water stress of soybeans irrigated by means of different irrigation systems under subhumid conditions.</p><p>The study site was located in Obersiebenbrunn, Lower Austria, about 30 km east of Vienna. The region is characterized by a mean temperature of 10.5°C with increasing trend due to climate change and mean annual precipitation of 550 mm. The investigations covered the vegetation period of soybean in 2018, from planting in April to harvest in September. Measurement data included precipitation, air temperature, relative humidity and wind velocity. The experimental field of 120x120 m<sup>2</sup> has been divided into four sub-areas: a plot of 14x120 m<sup>2</sup> with drip irrigation (DI), 14x120 m<sup>2</sup> without irrigation (NI), 36x120 m<sup>2</sup> with sprinkler irrigation (SI), and 56x120 m<sup>2</sup> irrigated with a hose reel boom with nozzles (BI). A total of 128, 187 and 114 mm of water were applied in three irrigation events in the plots DI, SI and BI, respectively. Soil water content was monitored in 10 cm depth (HydraProbe, Stevens Water) and matric potential was monitored in 20, 40 and 60 cm depth (Watermark, Irrometer). Canopy temperature was measured every 15 minutes using infrared thermometers (IRT; SI-411, Apogee Instruments). The IRTs were installed with an inclination of 45° at 1.8 m height above ground. Canopy temperature-based water stress indices for irrigation scheduling have been successfully applied in arid environments, but their use is limited in humid areas due to low vapor pressure deficit (VPD). To quantify stress in our study, the Crop Water Stress Index (CWSI) was calculated for each plot and compared to the index resulting from the Degrees Above Canopy Threshold (DACT) method. Unlike the CWSI, the DACT method does not consider VPD to provide a stress index nor requires clear sky conditions. The purpose of the comparison was to revise an alternative method to the CWSI that can be applied in a humid environment.</p><p>CWSI behaved similar for the four sub-areas. As expected, CWSI ≥ 1 during dry periods (representing severe stress) and it decreased considerably after precipitation or irrigation (representing no stress). The plot with overall lower stress was BI, producing the highest yield of the four plots. Results show that DACT may be a more suitable index since all it requires is canopy temperature values and has strong relationship with soil water measurements. Nevertheless, attention must be paid when defining canopy temperature thresholds. Further investigations include the development and test of a decision support system for irrigation scheduling combining both, plant-based and soil water status indicators for water use efficiency analysis.</p>


2000 ◽  
Vol 43 (4) ◽  
pp. 867-875 ◽  
Author(s):  
D. F. Wanjura ◽  
D. R. Upchurch

Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 249
Author(s):  
Gustavo Haddad Souza Vieira ◽  
Rhuanito Soranz Ferrarezi

The direct examination of plant canopy temperature can assist in optimizing citrus irrigation management in greenhouses. This study aimed to develop a method to measure canopy temperature using thermal imaging in one-year-old citrus plants in a greenhouse to identify plants with water stress and verify its potential to be used as a tool to assess citrus water status. The experiment was conducted for 48 days (27 November 2019 to 13 January 2020). We evaluated the influence of five levels of irrigation on two citrus species (‘Red Ruby’ grapefruit (Citrus paradisi) and ‘Valencia’ sweet orange (Citrus sinensis (L.) Osbeck)). Images were taken using a portable thermal camera and analyzed using open-source software. We determined canopy temperature, leaf photosynthesis and transpiration, and plant biomass. The results indicated a positive relationship between the amount of water applied and the temperature response of plants exposed to different water levels. Grapefruit and sweet orange plants that received less water and were submitted to water restrictions showed higher canopy temperatures than the air (up to 6 °C). The thermal images easily identified water-stressed plants. Our proof-of-concept study allowed quickly obtaining the canopy temperature using readily available equipment and can be used as a tool to assess citrus water status in one-year-old citrus plants in greenhouses and perhaps in commercial operations with mature trees in the field after specific experimentation. This technique, coupled with an automated system, can be used for irrigation scheduling. Thus, setting up a limit temperature is necessary to start the irrigation system and set the irrigation time based on the soil water content. To use this process on a large scale, it is necessary to apply an automation routine to process the thermal images in real time and remove the weeds from the background to determine the canopy temperature.


2005 ◽  
Vol 130 (5) ◽  
pp. 661-666 ◽  
Author(s):  
Kuo-Tan Li ◽  
James P. Syvertsen

Mechanical harvesting of citrus trees can cause physical injuries, such as shedding of leaves, exposing roots, and scuffing bark. Although mechanical harvesting usually has not reduced yield, physiological consequences to the tree from these visible injuries have not been investigated. We hypothesized that physical injuries to tree canopies and root systems from a properly operated trunk shaker would not cause short-term physiological effects. Tree water status and leaf gas exchange of mature `Hamlin' and `Valencia' sweet orange [Citrus sinensis (L.) Osb.] trees that were harvested by a trunk shaker were compared to hand-harvested trees. A trunk shaker was operated with adequate duration to remove >90% of mature fruit or with excessive shaking time under various environmental conditions and drought stress treatments throughout the harvest season. Mid-day stem (Ψstem) and leaf (Ψleaf) water potentials along with leaf gas exchange were measured before and after harvest. Trees harvested by the trunk shaker did not develop altered water status under most conditions. Trees harvested with excessive shaking time and/or with limited soil water supply developed low Ψstem resembling Ψstem of drought-stressed trees. However, water potential of all treatments recovered to values of the well-irrigated, hand-harvested trees after rainfall. In addition, mechanical harvesting did not reduce CO2 assimilation, transpiration, stomatal conductance, water use efficiency, or photosystem II efficiency as measured by chlorophyll fluorescence. Thus, despite visible injuries, a properly operated trunk shaker did not result in any measurable physiological stress.


2020 ◽  
Author(s):  
Rakesh Chandra Joshi ◽  
Dongryeol Ryu ◽  
Gary J. Sheridan ◽  
Patrick N.J. Lane

<p>Remote sensing techniques are widely used to evaluate the biophysical status of vegetation, including water stress caused by soil water deficit. Based on the nominal links between water stress condition, transpiration and canopy temperature in the vegetation, numerous studies have used a trapezoidal relationship between Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) over vegetated surfaces to develop the water stress metric, in which the level of stress could be identified by the spatial location of the pixels on the spectral space (Goetz and Goetz 1997; Lambin, Lambin, and Ehrlich 1996; Nemani et al. 1993; Nemani and Running 1989; Price 1990; Sandholt, Rasmussen, and Andersen 2002). However, the amount of change in canopy temperature could also vary spatially by the canopy water status at that time. Thus, LST-NDVI alone cannot construct an efficient metric to see the spatial patterns of water stress at ecosystem level unless they are coupled with water status of vegetation at that moment. This study hypothesizes that a metric which can combine LST-NDVI information with an indicator for canopy water status could give more accurate estimations of the real-time vegetation water stress. The remotely sensed plant canopy water status indicator (a metric based on canopy reflection in the Short-Wave Infrared region (SWIR)) could add the canopy water status information to the LST-NDVI based indices, which may better explain spatial/temporal water stress condition in the plants especially in densely forested areas where signal saturation is a major issue. In this study, the third-dimensional information of SWIR has been combined with LST-NDVI spectral space to create a new remotely sensed vegetation water stress index, TVWSI (Temperature Vegetation Water Stress Index) which seems to be more realistic to capture stress dynamics at large scale. </p><p>Sixty grids (2 km X 2 km) each containing 16 pixels of daily MODIS-reflectance (band 1 – band 7, 500 m spatial resolution) and 4 pixels of daily MODIS-LST (1 km spatial resolution) were chosen over forested areas in Victoria representing most of the bioregions as classified by the Interim Biogeographic Regionalisation for Australia (IBRA7). From 2002 to 2018 daily TVWSI values of each grid were evaluated against the modelled daily available soil moisture content in the top 1 m of the soil profile, and rainfall data, from the Australian Bureau of Meteorology (BOM). TVWSI performed better than other dryness indices mentioned in the literature. A high correlation was obtained between TVWSI vs. soil moisture and TVWSI vs. rainfall with a coefficient of determination value of 0.6 (p<0.001) and 0.61 (p<0.001) respectively when data were combined spatially and temporally. Even improved correlations ranging (0.4-0.7, p<0.001) were obtained for individual grids over the mentioned period. While correlation ranging (0.15-0.48, p<0.001) were obtained using dryness indices like Perpendicular Drought Index (PDI), Modified PDI (MPDI), Temperature Vegetation Dryness Index (TVDI) and Vegetation Supply Water Index (VSWI). The result shows that the TVWSI can capture real-time ecosystem water stress well and the metric could be an efficient input parameter for many hydrological, drought and fire prediction models.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document