scholarly journals Microstructure, Toughness and Hardness of a Simulated HAZ in Steel S1100QL and of the HAZ of an Actual MAGWelded Joint Made Using a Metallic Flux-Cored Wire

2021 ◽  
pp. 47-65
Author(s):  
Mirosław Łomozik

Simulation tests discussed in the article involved structural steel S1100QL having a yield point of more than 900 MPa. The simulations included single (Tmax = 1250°C) and double welding thermal cycle (Tmax = 1250°C + 600°C, Tmax = 1250°C + 760°C and Tmax = 1250°C + 900°C) as well as cooling times t8/5 = 3, 5 and 10 s. Specimens with the simulated heat affected zone (HAZ) were subjected to impact strength tests performed at a temperature of -40°C and +20°C, Vickers hardness tests (HV10) and microscopic metallographic tests (involving light microscopy). Test results were presented in diagrams and photographs. Related comparisons included results of the structural, hardness and toughness tests of simulated HAZs with analogous results obtained during the actual repair welding of a MAG-welded joint made of steel S1100QL. The final part of the article contains discussion concerning the test results and the statement concerning the obtainment of the significant conformity of the phase composition and the morphology of the microstructure as well as the average hardness values of the HAZ areas obtained in the simulations and those of the HAZ area obtained in the actual welded joint. In relation to all tested simulation variants, the impact energy of the simulated HAZ area of steel S1100QL satisfied the minimum criterion of KV = 27 J both in relation to a test temperature of -40°C and that of +20°C. The number of repeated (1 through 4) thermal cycles having preset parameters did not trigger explicitly noticeable changes in impact energy values as regards the simulated HAZ of steel S1100QL.

2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Zhiwei Chen ◽  
Caifu Qian ◽  
Guoyi Yang ◽  
Xiang Li

In this paper, a series of impact tests on S30403 austenitic stainless steel at 20/−196/−269 °C were performed to determine the effects of cryogenic temperatures on the material properties. Both base plate and welded joint including weld and heat-affected zone were tested to obtain the Charpy impact energy KV2 and lateral expansion rate at the cross section. It was found that when the test temperature decreased from 20 °C to −196 °C or −269 °C, both the Charpy impact energy KV2 at the base plate and welded joint decreased drastically. Specifically, the impact energy KV2 decreased by 20% at the base plate and decreased by 54% at the welded joint from 20 °C to −196 °C, but the impact energy of base plate and welded joint did not decrease, even increased when test temperature decreased from −196 °C to −269 °C. Either at 20 °C or −196 °C, the impact energy KV2 with 5 × 10 × 55 mm3 specimens was about 0.53 times that of the 7.5 × 10 × 55 mm3 specimens, much lower than 2/3, the ratio of two specimens’ cross section areas.


2020 ◽  
Vol 1157 ◽  
pp. 73-82
Author(s):  
Raghawendra Pratap Singh Sisodia ◽  
Marcell Gáspár ◽  
Béla Fodor ◽  
László Draskóczi

In this paper, heat affected zone characteristics of DP1000 steels was investigated during diode laser beam welding (LBW). A butt-welded joint of specimen in dimension of 300 x 150 mm each (according to EN15614-11:2002) with 1 mm thickness is used for the experimental purpose. The welding thermal cycle and the cooling circumstances in the HAZ was determined by real experiment and the physical simulation. A Gleeble 3500 thermo-physical simulator was used to physically simulate the coarse grain heat affected zone (CGHAZ) on the base material specimens by the utilization of the thermal cycles for t8/5 =2.5 s. The results of the physical simulation were validated by real welding experiments. The properties of the simulated and the real HAZ was examined by optical microscopic, scanning electron microscope and hardness tests.


2007 ◽  
Vol 26-28 ◽  
pp. 1071-1074
Author(s):  
Young Seok Song ◽  
M.R. Lee ◽  
Jeong Tae Kim

To check long term degradation behavior of hydraulic forged superalloy 718 during exposure at high temperature, an Alloy 718 ingot with a diameter of 400mm was manufactured by the vacuum melting process, VIM followed by VAR. The ingot was broken down for uniform microstructure and mechanical properties by a controlled cogging process using a hydraulic press. To investigate long term degradation behavior of impact properties and hardness, the specimens were exposed to 600oC, 650oC and 700oC for holding times up to 12,112 hours. Impact energy absorption tests were performed at room temperature. The fractured area and the microstructure of the impact specimens were observed by OEM and SEM and Brinell hardness tests were also performed. The changes of impact energy and hardness are remarkably different for each temperature condition. The results suggest that the impact properties and hardness of Ni based superalloy 718 is strongly related to temperature and time during high temperature exposure.


Author(s):  
Yousry B. I. Shaheen ◽  
Fatma M. Eid ◽  
Omnia Mesalam

Ferrocement is one of the structural materials, widely used due to its advantages from its particular behavior such as mechanical properties, and impact strength. This paper deals with the impact studies and energy absorption properties of ferrocement slabs. For these studies, 11 different ferrocement slabs of size 50 mm X 500 mm X 25 mm were cast with alteration in the combinations of mesh layers and test results are analyzed to find the different crack patterns .The test specimens were loaded by 3.10 kg under its height 1.20 m in the center of plates. The ferrocement plates were divided into 4 groups reinforced with steel mesh, steel mesh with steel bars, percentage of rubber and fiber. The impact energy at initial cracking stage and at failure was determined for all the slabs. Results of reinforced ferrocement plates emphasized that increasing the number of the steel mesh layers in the ferrocement forms increases the first cracking load, ultimate load and energy absorption. Using steel bars with steel meshes led to higher energy absorption than that obtained when using mild steel bars only. Using rubber and fiber achieved high impact energy.


2019 ◽  
Vol 5 (1) ◽  
pp. 117
Author(s):  
Muyasser M. Jomaah ◽  
Muna Zead Baraa

The objective of using materials is to fully utilize the properties of these materials in order to obtain the best performance of the structure. The merits of material are based on many factors like, workability, structural strength, durability and low cost. Ferrocement is an excellent construction system. This paper studies the behavior of ferrocement circular slabs under impact load. The experimental program include testing four sime fixed supported ferrocement circular slabs of 800mm diameter and 50mm thickness. The Influence of the use of styropor voids was investigated in different ratios (24% and 48%) and a number of wire mesh layers four and six layers. Impact load test results revealed that increasing number of wire mesh from 4 to 6 led to an increase in the impact energy for first crack by (41.991% ,37.62%) respectively when using voids ratio by (24% and 48%) respectively and impact energy for full perforation by (21.7% and 9.94%) respectively when using voids ratio by (24% and 48%) respectively. Ferrocement circular slabs are used in construction fields such as roofs, tanks, manholes, etc.


2018 ◽  
Vol 18 (6) ◽  
pp. 1811-1823 ◽  
Author(s):  
Chun Zhu ◽  
Dongsheng Wang ◽  
Xing Xia ◽  
Zhigang Tao ◽  
Manchao He ◽  
...  

Abstract. Gravel cushions are widely used to absorb the impact energy of falling rocks in open-pit mines. A particularly important application is to enhance the energy-absorbing capacity of rockfall sheds. In this paper, we study how varying the thickness and particle size of a gravel cushion influences its energy-consumption and buffering effects. We performed a series of laboratory drop tests by dropping blocks from a fixed height onto cushions of different thicknesses and particle sizes. The results indicate that, for a given impact energy, the cushion thickness has a strong influence on the measured coefficient of restitution (COR) and therefore impact pressure. Additional tests were performed to study how the radius of the block and the height it is dropped from affect the measured COR. This showed that as the movement height of the block is increased the COR also increases, and blocks with larger radii exhibit a larger variability in measured COR. Finally, we investigated the influence of rockfall block radius, r, movement height, H, cushion thickness, h, and particle size, d, on the COR and the damage depth, L, of the cushion. The test results reveal that the cushion thickness is the primary design parameter, controlling not only COR, but also the stability of the cushion material. The results provide a theoretical and practical basis for the design of gravel cushions for rockfall protection.


2012 ◽  
Vol 724 ◽  
pp. 127-130
Author(s):  
Dong Fang Du ◽  
Jie Liu ◽  
Guo Ping Li ◽  
Jin Ming Liu

In this paper, SAF2507 duplex stainless steel (DSS) was welded by GTAW with ER2594 as filler wire, and Ar + N2 as shielding gas. The results show that, with increasing the content of N2 in the shielding gas, the amount of austenite in weld metal increase, the micro-hardness drops and impact energy increases; the use of Ar +2 ~ 3% N2 welding parameters, the microstructure and mechanical properties of welded joints are the best, the austenitic rates and impact energy of weld metals are 51%~53% and 75~88 J, respectively, and the welding process is easy to control; when the content of N2 reach 5%, the impact energy of weld metal decreases obviously and the welding arc is unstable.


2015 ◽  
Vol 811 ◽  
pp. 9-13
Author(s):  
Maria Cristina Dijmărescu ◽  
Dumitru Titi Cicic ◽  
Corneliu Rontescu ◽  
Gheorghe Solomon ◽  
Mihai Ion Vasile

In manufacturing industry there are many applications for the permanent joint of components of different shapes, but they are also very different in terms of chemical composition and structure [1, 2]. This paper is trying to find technological solutions of assembling by welding of two steels with totally different chemical composition, i.e. carbon steel S235JR + AR and austenitic stainless 316L. The process used for making the heterogeneous joint was Metal Inert Gas (MIG) with flux cored wire, numerically coded 137. The paper presents the effects of welding technology, through heat input, such as hardness. Variations of hardness values determined in the joint areas are presented, as well as the chemical composition of the welded joint obtained using the flux cored wire T 23 12 LPM 1/C1, according to EN ISO 17633 - A.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012022
Author(s):  
Xiaoyan Qian ◽  
Xin Ye ◽  
Xiaoqi Hou ◽  
Fuxin Wang ◽  
Shaowei Li ◽  
...  

Abstract The narrow gap MAG welding system was used to successfully weld the 50mm thick butt joint of 25Cr2NiMo1V rotor steel. After 15-layer bead welding, heat treatment is performed on the welded joint. Compare the changes in the microstructure, tensile strength and impact energy of the welded joints and the heat-treated joints at 580°C (20h). The results show that after the heat treatment of the structure, the side lath ferrite in the coarse-grained region grows up, and the eutectoid ferrite grows up in the fine-grained region first. The strength of the welded joint is about 605MPa, and the fracture is characterized by ductile fracture. After heat treatment at 580°C (20h), the strength is about 543MPa, the fracture is characterized by ductile fracture, and there are also a large number of discontinuous small surface platforms, and the characteristic of brittle fracture appears slightly. The impact energy of the weld center of the welded joint is about 141J, the fusion line area is about 113J, and the toughness of the fusion line is slightly lower than that of the weld center. After heat treatment, the impact energy at the center of the weld is about 183J, the fusion line area is about 95J, the toughness of the weld center increases, and the toughness of the fusion line decreases.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Zongxuan Zou ◽  
Zhengjun Liu ◽  
Xingyu Ai ◽  
Dan Wu

High-strength low-alloy (HSLA) steel is used in important steel structural members because of its strength and plastic toughness. Q960 steel is HSLA steel obtained by adding an appropriate amount of alloy elements and quenching and tempering treatment on the basis of ordinary low-carbon steel. This kind of steel has strong hardenability due to the alloy elements added. Cold cracks, embrittlement and softening of the heat-affected zone easily occur after welding. In particular, the low-temperature impact toughness cannot meet the requirements and limits its use. In this paper, self-shielded welding is used to adjust the content of aluminum in flux-cored wire. The relationship between weld metal (WM) microstructure and strength and properties was studied by tensile test and impact test, and the influence mechanism of Al content on weld metal microstructure and properties was analyzed. The results show that when the content of Al is 0.21%, the impact energy at 0 °C~−60 °C is the best, the tensile strength can reach 1035 MPA and the number of pores is small. The size of inclusions in WM is mostly less than 1.0 μm Al2O3 spherical oxide. It can become the center of acicular ferrite (AF) and increase the nucleation probability. However, with the increase of Al content, large irregular AlN inclusions are produced, which reduces the tensile strength and impact energy of the welded joint.


Sign in / Sign up

Export Citation Format

Share Document