Optimal Control for Response Reduction of Single Hinged Articulated Tower Using an MR Damper

2021 ◽  
Vol 31 (4) ◽  
pp. 462-471
Author(s):  
Kushal Solomon ◽  
Deepak Kumar
Keyword(s):  
2016 ◽  
Vol 858 ◽  
pp. 145-150
Author(s):  
Yu Liang Zhao ◽  
Zhao Dong Xu

This paper discussed an elastic-plastic time-history analysis on a structure with MR dampers based on member model, in which the elastoplastic member of the structure is assumed to be single component model and simulated by threefold line stiffness retrograde model. In order to obtain better control effect, Linear Quadratic Gaussian (LQG) control algorithm is used to calculate the optimal control force, and Hrovat boundary optimal control strategy is used to describe the adjustable damping force range of MR damper. The effectiveness of the MR damper based on LQG algorithm to control the response of the structure was investigated. The results from numerical simulations demonstrate that LQG algorithm can effectively improve the response of the structure against seismic excitations only with acceleration feedback.


2019 ◽  
Vol 9 (18) ◽  
pp. 3866 ◽  
Author(s):  
Weiqing Fu ◽  
Chunwei Zhang ◽  
Mao Li ◽  
Cunkun Duan

The traditional passive base isolation is the most widely used method in the engineering practice for structural control, however, it has the shortcoming that the optimal control frequency band is significantly limited and narrow. For the seismic isolation system designed specifically for large earthquakes, the structural acceleration response may be enlarged under small earthquakes. If the design requirements under small earthquakes are satisfied, the deformation in the isolation layer may become too large to be accepted. Occasionally, it may be destroyed under large earthquakes. In the isolation control system combined with rubber bearing and magnetorheological (MR) damper, the MR damper can provide instantaneous variable damping force to effectively control the structural response at different input magnitudes. In this paper, the control effect of semi-active control and quasi-passive control for the isolation control system is verified by the shaking table test. In regard to semi-active control, the linear quadratic regulator (LQR) classical linear optimal control algorithm by continuous control and switch control strategies are used to control the structural vibration response. Numerical simulation analysis and shaking table test results indicate that isolation control system can effectively overcome the shortcoming due to narrow optimum control band of the passive isolation system, and thus to provide optimal control for different seismic excitations in a wider frequency range. It shows that, even under super large earthquakes, the structure still exhibits the ability to maintain overall stability performance.


2013 ◽  
Vol 464 ◽  
pp. 229-234 ◽  
Author(s):  
Bruno Sousa Carneiro da Cunha ◽  
Fábio Roberto Chavarette

In this paper we study the behavior of a semi-active suspension witch external vibrations. The mathematical model is proposed coupled to a magneto rheological (MR) damper. The goal of this work is stabilize of the external vibration that affect the comfort and durability an vehicle, to control these vibrations we propose the combination of two control strategies, the optimal linear control and the magneto rheological (MR) damper. The optimal linear control is a linear feedback control problem for nonlinear systems, under the optimal control theory viewpoint We also developed the optimal linear control design with the scope in to reducing the external vibrating of the nonlinear systems in a stable point. Here, we discuss the conditions that allow us to the linear optimal control for this kind of non-linear system.


2013 ◽  
Vol 278-280 ◽  
pp. 1500-1503 ◽  
Author(s):  
Jian Jun Liu ◽  
Kuan Jun Zhu

One challenge in the use of semi-active technology is in developing nonlinear control algorithms that are appropriate for implementation in full-scale structures. Based on the basic characteristics of magnetorheological (MR) damper, the structural control algorithms are introduced. The nonlinear control algorithms are systematically reviewed from the aspects including clipped optimal control, LQR control, and Lyapunov stability control. Finally, the existed problem in application and the future developing in research on the structural control algorithms are summarized respectively.


Author(s):  
Harinder J. Singh ◽  
Norman M. Wereley

Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with minimum recoil load transmissions have lower rate of fire and vice versa. The gun recoil absorber performance is also analyzed for fluctuations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery (ready to reload and fire) position without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
YuanYuan Fang

To improve the vibration reduction performance of two-stage vibration isolation systems for marine engines under wide frequency band and multifrequency excitation, the magnetorheological (MR) damper is introduced into the vibration isolation system and an optimal controller is designed. Taking the test results of MR damper dynamic characteristics as sample data, the forward and inverse models of the MR damper are identified by the least square method and neural network (NN) method respectively, and the identification results are applied to semiactive control of the two-stage isolation system. Based on the analysis of vibration source, a six-degree-of-freedom mechanical model of two-stage system based on the MR damper is established. The optimal controller taking the minimum force transmitted from the engine to base as the control objective is designed. The system model and numerical simulation analysis are established using MATLAB. The results show that the isolation effect of optimal control is better than that of passive vibration isolation in the whole frequency band. In addition, good control effect is achieved in the low-frequency resonance region which is most concerned in engineering, which is of great significance to further improve the vibration reduction performance of marine engines.


Author(s):  
Kushal Solomon ◽  
Deepak Kumar

Abstract Articulated tower is a compliant offshore structure deployed in deep waters for oil and gas exploration. The base of the tower is connected to the sea bed through universal joint, which allows the tower to rotate about horizontal axis (pitch). Articulated towers attain stability due to large buoyancy forces acting on it. Under extreme wave loads, the response of ALP can exceed the design limit causing discomfort to the occupants and create unfavourable working conditions. Structural control systems can be implemented in order to reduce the response of ALP, thereby protecting the structure from damages and to increase its life span. In this paper, a semi-active optimal control strategy using Magneto-Rheological damper is adopted to reduce the responses of ALP. Bouc-Wen model is used to describe the force generated by MR-Damper. For achieving the optimal performance of the control system, the applied voltage is varied according to the measured feedback at any moment to change the damping force using linear quadratic regulator technique. Several parametric studies have been conducted and the performance of the controller is evaluated. It is observed that the response of ALP is reduced considerably by using MR-damper as a semi-active control device. However, the capacity of the damper required for achieving the desired control is huge.


Sign in / Sign up

Export Citation Format

Share Document