scholarly journals Investigations on Improving the Compressive Strength of Sand Column with Cement Grout and Chemical Admixture

Author(s):  
M. Samuel Thanaraj, Et. al.

Grouting is one of the most commonly adopted technique for soil improvement and strengthening. Adding super plasticizers, accelerators, antifreezes, air entraining agent improves the performance of the cement grout. The performance of the grout while injecting in the sand column mainly depends on its fluidity property.  Keeping it in mind about the water cement ratio, the strength of the sand column is studied in two sets of experiments one by sand column with cement grout only and another set by sand column with cement grout added with super plasticizers by varying the water cement ratios. Strength parameters like angle of internal friction and cohesion were obtained be direct shear test and unconfined compressive strength test on the specimens by varying the water content. An increase of 15.2kPa to 60.33 kPa was observed in the cohesion value for specimens with 10% water content and 13.8 kpa to 47.2kPa cohesion value observed in the specimens with 20% water content. The angle of internal friction was decreased from 360 to 160 for 10% water content whereas 300 to 100 for 20% water content.  A series of experiments were conducted on the sand column grouted with cement and for different water cement ratios as 1.5, 2.0 and 2.5. Another set of experiments were repeated by adding 2%super plasticizer Sulphonated Melamine Formaldehyde (SMF). The experiment results revealed that at lower water cement ratio higher value of compressive strength was observed. It was also observed that the strength increases with curing period. 

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Son Bui Truong ◽  
Nu Nguyen Thi ◽  
Duong Nguyen Thanh

Soft soil is widely distributed in Vietnam, especially in the coastal area. In engineering practice, soft soil cannot be used to build any construction and needs to be improved or treated before building construction. In addition, Vietnam has many pig-iron or thermal power plants, which annually produce a huge amount of granulated blast furnace slag (GBFS). Thus, the use of this material for soft soil improvement needs to be considered. This paper presents experimental results on the unconfined compressive strength (UCS) of three Vietnam’s soft soils treated with Portland cement and Portland cement with ground granulated blast furnace slag (GGBFS). Binder dosage used in this study is 250, 300, and 350 kg/m3 with the three different water/cement ratios of 0.8, 0.9, and 1.0, respectively. The research results showed that the UCS of soil-cement mixtures depends on soil type, water/cement ratio, cement type, and binder content. Accordingly, the unconfined compressive strength increased with the increase of binder contents, the decrease of the natural water content of soft soil, water/cement ratios, and clay content. The highest value of UCS of treated soils was found for the soil at Site II with the Portland cement content, cement GGBFS, and water/cement ratio of 873 kg/m3, 2355 kg/m3, and 0.8, respectively. Besides, for all the three soils and two binder types, the water/cement ratio of 0.8 was found to be suitable to reach the highest UCS values of treated soil. The research results also showed that the UCS of treated soil with cement GGBFS was higher than that of treated soil with Portland cement. This indicated the effectiveness of the use of Portland cement with GGBFS in soft soil improvement. There is great potential for reducing the environmental problems regarding the waste materials from pig-iron plants in Vietnam and the construction cost as well.


2018 ◽  
Vol 4 (12) ◽  
pp. 2919 ◽  
Author(s):  
Ashfaque Ahmed Jhatial ◽  
Samiullah Sohu ◽  
Muhammad Tahir Lakhiar ◽  
Jam Shahzaib ◽  
Ahsan Ali Buriro

Though superplasticizers (SP) are well-known chemical admixtures which are added into concrete to enhance the workability and achieve higher strength while reducing the water content. But the rapid increase in different SP in Pakistan has created confusion on the effectiveness of SP. This experimental study was carried out to study the effect of locally available SP on the workability and compressive strength of M15 grade concrete. Three different SP were utilized, with dosage ranging from 0.5% to 2.5% with an increment of 0.5%. The water-cement ratio remained constant at 0.5 for all samples. Based upon the results, all three SP increased the workability as well as strength of concrete. The optimum dosage was determined to be 1.5% to 2.00% for all three SPs used in this research work. BASF 561 was determined to be more effective, as it achieved the maximum workability as well as compressive and flexural strengths.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 44
Author(s):  
Fernando A. N. Silva ◽  
João M. P. Q. Delgado ◽  
Rosely S. Cavalcanti ◽  
António C. Azevedo ◽  
Ana S. Guimarães ◽  
...  

The work presents the results of an experimental campaign carried out on concrete elements in order to investigate the potential of using artificial neural networks (ANNs) to estimate the compressive strength based on relevant parameters, such as the water–cement ratio, aggregate–cement ratio, age of testing, and percentage cement/metakaolin ratios (5% and 10%). We prepared 162 cylindrical concrete specimens with dimensions of 10 cm in diameter and 20 cm in height and 27 prismatic specimens with cross sections measuring 25 and 50 cm in length, with 9 different concrete mixture proportions. A longitudinal transducer with a frequency of 54 kHz was used to measure the ultrasonic velocities. An ANN model was developed, different ANN configurations were tested and compared to identify the best ANN model. Using this model, it was possible to assess the contribution of each input variable to the compressive strength of the tested concretes. The results indicate an excellent performance of the ANN model developed to predict compressive strength from the input parameters studied, with an average error less than 5%. Together, the water–cement ratio and the percentage of metakaolin were shown to be the most influential factors for the compressive strength value predicted by the developed ANN model.


2013 ◽  
Vol 648 ◽  
pp. 108-111
Author(s):  
Qi Jin Li ◽  
Guo Zhong Li

The construction waste was processed into recycled aggregate to produce solid construction waste brick with grade of MU20. The preparation process of recycled aggregate and the optimal value of mass ratio of water to cement (water cement ratio) and mass ratio of recycled aggregate to cement was studied. The results shows that when the water cement ratio is 0.86 and the mass ratio of recycled aggregate to cement is 5.5 and the dosage of activator is 0.25% (mass fraction with recycled aggregate), the compressive strength of sample is 22.5MPa and can be satisfied with the requirement of MU20 solid concrete brick.


2018 ◽  
Vol 8 (8) ◽  
pp. 1324 ◽  
Author(s):  
How-Ji Chen ◽  
Chung-Hao Wu

Expanded shale lightweight aggregates, as the coarse aggregates, were used to produce lightweight aggregate concrete (LWAC) in this research. At the fixed water-cement ratio, paste quantity, and aggregate volume, the effects of various aggregate gradations on the engineering properties of LWAC were investigated. Comparisons to normal-weight concrete (NWC) made under the same conditions were carried out. From the experimental results, using normal weight aggregates that follow the specification requirements (standard gradation) obtained similar NWC compressive strength to that using uniform-sized aggregates. However, the compressive strength of LWAC made using small uniform-sized aggregates was superior to that made from standard-grade aggregates. This is especially conspicuous under the low water-cement ratio. Even though the workability was affected, this problem could be overcome with developed chemical additive technology. The durability properties of concrete were approximately equal. Therefore, it is suggested that the aggregate gradation requirement of LWAC should be distinct from that of NWC. In high strength LWAC proportioning, following the standard gradation suggested by American Society for Testing and Materials (ASTM) is optional.


2013 ◽  
Vol 850-851 ◽  
pp. 847-850 ◽  
Author(s):  
Lin Chao Dai

In order to study the coal and gas outburst similar simulation experiment, coal similar material was made up based on the similarity theory. Based on the previous similar material study, the cement, sand, water, activated carbon and coal powder was selected as the raw material of similar material. Meanwhile similar material matching program with 5 factors and 6 levels was designed by using Uniform Design Method. And the physical and mechanical properties of the similar material compressive strength was measured under different proportions circumstances. The relationship between similar material and the raw materials was analyzed. The results show that choosing different materials can compound different similar materials with different requirements. And the water-cement ratio plays a decisive influence on the compressive strength of similar material. The compressive strength of similar material decreases linearly when the water-cement ratio increases.


2014 ◽  
Vol 2 (1) ◽  
pp. 75-82
Author(s):  
Elivs M. Mbadike ◽  
N.N Osadebe

In this research work, the effect of mound soil on concrete produced with river sand was investigated. A mixed proportion of 1.1.8:3.7 with water cement ratio of 0.47 were used. The percentage replacement of river sand with mound soil is 0%, 5%, 10%, 20%, 30% and 40%. Concrete cubes of 150mm x 150mm x150mm of river sand/mound soil were cast and cured at 3, 7, 28, 60 and 90 days respectively. At the end of each hydration period, the three cubes for each hydration period were crushed and their average compressive strength recorded. A total of ninety (90) concrete cubes were cast. The result of the compressive strength test for 5- 40% replacement of river sand with mound soil ranges from 24.00 -42.58N/mm2 a against 23.29-36.08N/mm2 for the control test (0% replacement).The workability of concrete produced with 5- 40% replacement of river sand with mound soil ranges from 47- 62mm as against 70mm for the control test.


Author(s):  
A.O Adeyemi ◽  
M.A Anifowose ◽  
I.O Amototo ◽  
S.A Adebara ◽  
M.Y Olawuyi

This study examined the effect of varying water cement ratio on the compressive strength of concrete produced using palm kernel shell (PKS) as coarse aggregate at different replacement levels. The replacement levels of coarse aggregate with palm kernel shells (PKS) were 0%, 25%, 50%, and 100% respectively. PKS concrete cubes (144 specimens) of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14, 21 and 28 days respectively. A mix ratio of 1:2:4 was adopted with water-cement ratio of 0.45, 0.5, and 0.6 respectively while the batching was done by weight. Slump test was conducted on fresh concrete while compressive strength test was carried out on the hardened concrete cubes using a compression testing machine of 2000kN capacity. The result of tests on fresh concrete shows that the slump height of 0.45 water cement ratio (w/c) increases with an increase in PKS%. This trend was similar to 0.50 and 0.60 w/c. However, the compressive strength of concrete cube decreases with an increase in w/c (from 0.45 to 0.60) but increases with respect to curing age and also decreases with increase in PKS%. Concrete with 0.45 water-cement ratio possess the highest compressive strength. It was observed that PKS is not a good substitute for coarse aggregate in mix ratio 1:2:4 for concrete productions. Hence, the study suggest the use of chemical admixture such as superplasticizer or calcium chloride in order to improve the strength of palm kernel shells-concrete.


2019 ◽  
Vol 2 (2) ◽  
pp. 126-136
Author(s):  
M.I Retno Susilorini ◽  
Budi Eko Afrianto ◽  
Ary Suryo Wibowo

Concrete building safety of fire is better than other building materials such as wood, plastic, and steel,because it is incombustible and emitting no toxic fumes during high temperature exposure. However,the deterioration of concrete because of high temperature exposure will reduce the concrete strength.Mechanical properties such as compressive strength and modulus of elasticity are absolutely corruptedduring and after the heating process. This paper aims to investigate mechanical properties of concrete(especially compressive strength and modulus of elasticity) with various water-cement ratio afterconcrete suffered by high temperature exposure of 500oC.This research conducted experimental method and analytical method. The experimental methodproduced concrete specimens with specifications: (1) specimen’s dimension is 150 mm x 300 mmconcrete cylinder; (2) compressive strength design, f’c = 22.5 MPa; (3) water-cement ratio variation =0.4, 0.5, and 0.6. All specimens are cured in water for 28 days. Some specimens were heated for 1hour with high temperature of 500oC in huge furnace, and the others that become specimen-controlwere unheated. All specimens, heated and unheated, were evaluated by compressive test.Experimental data was analyzed to get compressive strength and modulus of elasticity values. Theanalytical method aims to calculate modulus of elasticity of concrete from some codes and to verifythe experimental results. The modulus elasticity of concrete is calculated by 3 expressions: (1) SNI03-2847-1992 (which is the same as ACI 318-99 section 8.5.1), (2) ACI 318-95 section 8.5.1, and (3)CEB-FIP Model Code 1990 Section 2.1.4.2.The experimental and analytical results found that: (1) The unheated specimens with water-cementratio of 0.4 have the greatest value of compressive strength, while the unheated specimens with watercementratio of 0.5 gets the greatest value of modulus of elasticity. The greatest value of compressivestrength of heated specimens provided by specimens with water-cement ratio of 0.5, while the heatedspecimens with water-cement ratio of 0.4 gets the greatest value of modulus of elasticity, (2) Allheated specimens lose their strength at high temperature of 500oC, (3) The analytical result shows thatmodulus of elasticity calculated by expression III has greater values compares to expression I and II,but there is only little difference value among those expressions, and (4)The variation of water-cementratio of 0.5 becomes the optimum value.


2021 ◽  
Vol 3 (2) ◽  
pp. 74-80
Author(s):  
Talal Masoud

The results of the direct shear test on Jerash expansive soil show the effect of the initial water content on the cohesion (c) and on the angel of internal friction ( ) [shear strength parameters].it show that, as the initial water increase, the cohesion (c) of Jerash expansive soil also increase up to the shrinkage limit, after that increase of water even small amount, decrease the cohesion of the soil. On the other hand, the results of direct shear test show also  that as the water content increase, the angle of internal friction ( )remain unchanged up to shrinkage limit , any increase of water cause a large decrease on the angle of internal friction of Jerash expansive soil.


Sign in / Sign up

Export Citation Format

Share Document