Biofilm Formation by Candida Species on Silicone Surfaces and Latex Pacifier Nipples: An in vitro Study

2009 ◽  
Vol 33 (3) ◽  
pp. 235-240 ◽  
Author(s):  
Luiz Cezar da Silveira ◽  
Senda Charone ◽  
Lucianne Cople Maia ◽  
Rosangela Maria de Araújo Soares ◽  
Maristela Barbosa Portela

The present study assessed the growth and development of biofilm formation by isolates of C. albicans, C. glabrata and C. parapsilosis on silicone and latex pacifier nipples. The silicone and latex surfaces were evaluated by scanning electronic microscopy (SEM). The plastic component of the nipple also seems to be an important factor regarding the biofilm formation by Candida spp. The biofilm growth was measured using the MTT reduction reaction. C. albicans was found to have a slightly greater capacity of forming biofilm compared to the other Candida species. Analysis of the pattern of biofilm development by C. albicans,C. glabrata and C. parapsilosis on latex and silicon pacifier shields showed an increased biofilm formation regarding the latter substrate. Silicone was shown to be more resistant to fungal colonization, particularly in the case of C. parapsilosis, despite the lack of any statistically significant differences (P > 0.05). In addition, silicone has a smoother surface compared to latex, whose surface was found to be rugose and irregular

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2458 ◽  
Author(s):  
Bruna Raquel Zancopé ◽  
Vanessa B. Dainezi ◽  
Marinês Nobre-dos-Santos ◽  
Sillas Duarte ◽  
Vanessa Pardi ◽  
...  

BackgroundA carbon dioxide (CO2) laser has been used to morphologically and chemically modify the dental enamel surface as well as to make it more resistant to demineralization. Despite a variety of experiments demonstrating the inhibitory effect of a CO2laser in reduce enamel demineralization, little is known about the effect of surface irradiated on bacterial growth. Thus, this in vitro study was preformed to evaluate the biofilm formation on enamel previously irradiated with a CO2laser (λ = 10.6 µM).MethodsFor this in vitro study, 96 specimens of bovine enamel were employed, which were divided into two groups (n = 48): 1) Control-non-irradiated surface and 2) Irradiated enamel surface. Biofilms were grown on the enamel specimens by one, three and five days under intermittent cariogenic condition in the irradiated and non-irradiated surface. In each assessment time, the biofilm were evaluated by dry weigh, counting the number of viable colonies and, in fifth day, were evaluated by polysaccharides analysis, quantitative real time Polymerase Chain Reaction (PCR) as well as by contact angle. In addition, the morphology of biofilms was characterized by fluorescence microscopy and field emission scanning electron microscopy (FESEM). Initially, the assumptions of equal variances and normal distribution of errors were conferred and the results are analyzed statistically by t-test and Mann Whitney test.ResultsThe mean of log CFU/mL obtained for the one-day biofilm evaluation showed that there is statistical difference between the experimental groups. When biofilms were exposed to the CO2laser, CFU/mL and CFU/dry weight in three day was reduced significantly compared with control group. The difference in the genes expression (Glucosyltransferases (gtfB) and Glucan-binding protein (gbpB)) and polysaccharides was not statically significant. Contact angle was increased relative to control when the surface was irradiated with the CO2laser. Similar morphology was also visible with both treatments; however, the irradiated group revealed evidence of melting and fusion in the specimens.ConclusionIn conclusion, CO2laser irradiation modifies the energy surface and disrupts the initial biofilm formation.


2016 ◽  
Author(s):  
Bruna Raquel Zancope ◽  
Vanessa B Dainezi ◽  
Marinês Nobre-dos-Santos ◽  
Sillas Duarte, Jr ◽  
Vanessa Pardi ◽  
...  

Background. CO2 laser has been used to morphologically and chemically modify the dental enamel surface as well as to turn it more resistant to demineralization. Despite a variety of experiments demonstrating the inhibitory effect of CO2 laser in reduce enamel demineralization, little is known about the effect of surface irradiated on bacterial growth. Thus, this in vitro study was preformed to evaluate the biofilm formation on enamel previously irradiated with a CO2 laser (λ = 10.6 µM). Methods. For this in vitro study, it was employed 96 specimens of bovine enamel, which were divided into 2 groups (n = 48): 1) Control-non-irradiated surface and 2) Irradiated enamel surface. Biofilms were grown on the enamel specimens by 1, 3 and 5 days under intermittent cariogenic condition in the irradiated and non irradiated surface. In each assessment time, the biofilm were evaluated by dry weigh, counting the number of viable colonies and in fifth day, were evaluated by polysaccharides analysis, quantitative real time PCR as well as by contact angle. In addition, the morphology of biofilms was characterized by fluorescence microscopy and field emission scanning electron microscopy (FESEM). Initially, the assumptions of equal variances and normal distribution of errors were conferred and the results are analyzed statistically by t-test and Mann Whitney test. Results. The mean of log CFU/ml obtained for the 1-day biofilm evaluation showed that there is statistical difference between the experimental groups. When biofilms were exposed to CO2 laser, CFU/mL and CFU/ Dry Weight in 3 day was reduced significantly compared with control group. The difference in the genes expression (gtfB and gbpB) and polysaccharides was not statically significant. Contact angle was increased relative to control when the surface was irradiated with CO2 laser. Similar morphology was also visible with both treatments, however irradiated group revealed evidence of melting and fusion in the specimens. Conclusion. In conclusion CO2 laser irradiation modify the energy surface and disrupt the initial biofilm formation.


2009 ◽  
Vol 75 (11) ◽  
pp. 3663-3672 ◽  
Author(s):  
Catrin Stichternoth ◽  
Joachim F. Ernst

ABSTRACT Hypoxia is encountered frequently by Candida albicans during systemic infection of the human host. We tested if hypoxia allows biofilm formation by C. albicans, which is a major cause of perseverance and antifungal resistance in C. albicans infections. Using an in vitro biofilm system, we unexpectedly discovered that several positive regulators of biofilm formation during normoxia, including Tec1, Ace2, Czf1, Och1, and Als3, had little or no influence on biofilm development during hypoxia, irrespective of the carbon dioxide level, indicating that C. albicans biofilm pathways differ depending on the oxygen level. In contrast, the Efg1 and Flo8 regulators were required for both normoxic and hypoxic biofilm formation. To explore the role of Efg1 during hypoxic and/or biofilm growth, we determined transcriptome kinetics following release of EFG1 expression by a system under transcriptional control of a doxycycline-inducible promoter. During hypoxia, Efg1 rapidly induced expression of all major classes of genes known to be associated with normoxic biofilm formation, including genes involved in glycolysis, sulfur metabolism, and antioxidative and peroxisome activities, as well as genes for iron uptake. The results suggest that hypoxic adaptation mediated by the Efg1 and Flo8 regulators is required even during normoxic biofilm development, while hypoxic biofilm formation in deep tissues or in organs may generate foci of C. albicans infections.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1371
Author(s):  
Jakub Spałek ◽  
Tamara Daniluk ◽  
Adrian Godlewski ◽  
Piotr Deptuła ◽  
Urszula Wnorowska ◽  
...  

This study aimed to investigate the potential application of ceragenins (CSAs) as new candidacidal agents to prevent biofilm formation on voice prostheses (VPs). The deterioration of the silicone material of VPs is caused by biofilm growth on the device which leads to frequent replacement procedures and sometimes serious complications. A significant proportion of these failures is caused by Candida species. We found that CSAs have significant candidacidal activities in vitro (MIC; MFC; MBIC), and they effectively eradicate species of yeast responsible for VP failure. Additionally, in our in vitro experimental setting, when different Candida species were subjected to CSA-13 and CSA-131 during 25 passages, no tested Candida strain showed the significant development of resistance. Using liquid chromatography–mass spectrometry (LC-MS), we found that VP immersion in an ethanol solution containing CSA-131 results in silicon impregnation with CSA-131 molecules, and in vitro testing revealed that fungal biofilm formation on such VP surfaces was inhibited by embedded ceragenins. Future in vivo studies will validate the use of ceragenin-coated VP for improvement in the life quality and safety of patients after a total laryngectomy.


2016 ◽  
Author(s):  
Bruna Raquel Zancope ◽  
Vanessa B Dainezi ◽  
Marinês Nobre-dos-Santos ◽  
Sillas Duarte, Jr ◽  
Vanessa Pardi ◽  
...  

Background. CO2 laser has been used to morphologically and chemically modify the dental enamel surface as well as to turn it more resistant to demineralization. Despite a variety of experiments demonstrating the inhibitory effect of CO2 laser in reduce enamel demineralization, little is known about the effect of surface irradiated on bacterial growth. Thus, this in vitro study was preformed to evaluate the biofilm formation on enamel previously irradiated with a CO2 laser (λ = 10.6 µM). Methods. For this in vitro study, it was employed 96 specimens of bovine enamel, which were divided into 2 groups (n = 48): 1) Control-non-irradiated surface and 2) Irradiated enamel surface. Biofilms were grown on the enamel specimens by 1, 3 and 5 days under intermittent cariogenic condition in the irradiated and non irradiated surface. In each assessment time, the biofilm were evaluated by dry weigh, counting the number of viable colonies and in fifth day, were evaluated by polysaccharides analysis, quantitative real time PCR as well as by contact angle. In addition, the morphology of biofilms was characterized by fluorescence microscopy and field emission scanning electron microscopy (FESEM). Initially, the assumptions of equal variances and normal distribution of errors were conferred and the results are analyzed statistically by t-test and Mann Whitney test. Results. The mean of log CFU/ml obtained for the 1-day biofilm evaluation showed that there is statistical difference between the experimental groups. When biofilms were exposed to CO2 laser, CFU/mL and CFU/ Dry Weight in 3 day was reduced significantly compared with control group. The difference in the genes expression (gtfB and gbpB) and polysaccharides was not statically significant. Contact angle was increased relative to control when the surface was irradiated with CO2 laser. Similar morphology was also visible with both treatments, however irradiated group revealed evidence of melting and fusion in the specimens. Conclusion. In conclusion CO2 laser irradiation modify the energy surface and disrupt the initial biofilm formation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammed Nadeem Bijle ◽  
Manikandan Ekambaram ◽  
Edward C. M. Lo ◽  
Cynthia Kar Yung Yiu

AbstractThe objectives of the in vitro study were: (1) to investigate the effect of combining L-arginine (Arg) and NaF on the growth of Lactobacillus rhamnosus GG (LRG); and (2) to identify an optimum synergistic concentration for the synbiotic (Arg + LRG)-fluoride (SF) therapy. 1% Arg + 2000-ppm NaF (A-SF) and 2% Arg + 2000-ppm NaF (B-SF) demonstrated antagonism against LRG (FIC > 4.0). Both XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) and WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) assays showed that A-SF and B-SF enhanced the growth of LRG when compared to 2000-ppm NaF and LRG control. Colony forming units, bacterial weight, and biofilm thickness of A-SF and B-SF were significantly higher than 2000-ppm NaF and LRG control. Biofilm imaging depicted that 2000-ppm NaF inhibited biofilm formation; while 1%/2% Arg, A-SF, and B-SF increased biofilm growth of LRG. Lactic acid formation was the lowest for 2000-ppm NaF, followed by A-SF and then B-SF. The SF buffer potential after 24 h was the highest for B-SF, and then A-SF. Biofilm pH for B-SF was closest to neutral. Fluoride, Arg and LRG bioavailability remained unaffected in B-SF. The relative gene expression for arcA, argG, and argH was significantly higher for B-SF than the respective controls. In conclusion, combining 2% Arg, 2000-ppm NaF, and LRG provides an optimum synbiotic-fluoride synergism.


2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098774
Author(s):  
Jinpeng Zou ◽  
Yang Liu ◽  
Ruiwei Guo ◽  
Yu Tang ◽  
Zhengrong Shi ◽  
...  

The drug resistance of Pseudomonas aeruginosa is a worldwide problem due to its great threat to human health. A crude extract of Angelica dahurica has been proved to have antibacterial properties, which suggested that it may be able to inhibit the biofilm formation of P. aeruginosa; initial exploration had shown that the crude extract could inhibit the growth of P. aeruginosa effectively. After the adaptive dose of coumarin was confirmed to be a potential treatment for the bacteria’s drug resistance, “coumarin-antibiotic combination treatments” (3 coumarins—simple coumarin, imperatorin, and isoimperatorin—combined with 2 antibiotics—ampicillin and ceftazidime) were examined to determine their capability to inhibit P. aeruginosa. The final results showed that (1) coumarin with either ampicillin or ceftazidime significantly inhibited the biofilm formation of P. aeruginosa; (2) coumarin could directly destroy mature biofilms; and (3) the combination treatment can synergistically enhance the inhibition of biofilm formation, which could significantly reduce the usage of antibiotics and bacterial resistance. To sum up, a coumarin-antibiotic combination treatment may be a potential way to inhibit the biofilm growth of P. aeruginosa and provides a reference for antibiotic resistance treatment.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1758
Author(s):  
Urszula Wójcik-Bojek ◽  
Joanna Rywaniak ◽  
Przemysław Bernat ◽  
Anna Podsędek ◽  
Dominika Kajszczak ◽  
...  

Staphylococcus aureus is still one of the leading causes of both hospital- and community-acquired infections. Due to the very high percentage of drug-resistant strains, the participation of drug-tolerant biofilms in pathological changes, and thus the limited number of effective antibiotics, there is an urgent need to search for alternative methods of prevention or treatment for S. aureus infections. In the present study, biochemically characterized (HPLC/UPLC–QTOF–MS) acetonic, ethanolic, and water extracts from fruits and bark of Viburnum opulus L. were tested in vitro as diet additives that potentially prevent staphylococcal infections. The impacts of V. opulus extracts on sortase A (SrtA) activity (Fluorimetric Assay), staphylococcal protein A (SpA) expression (FITC-labelled specific antibodies), the lipid composition of bacterial cell membranes (LC-MS/MS, GC/MS), and biofilm formation (LIVE/DEAD BacLight) were assessed. The cytotoxicity of V. opulus extracts to the human fibroblast line HFF-1 was also tested (MTT reduction). V. opulus extracts strongly inhibited SrtA activity and SpA expression, caused modifications of S. aureus cell membrane, limited biofilm formation by staphylococci, and were non-cytotoxic. Therefore, they have pro-health potential. Nevertheless, their usefulness as diet supplements that are beneficial for the prevention of staphylococcal infections should be confirmed in animal models in the future.


2021 ◽  
Vol 22 (7) ◽  
pp. 3666
Author(s):  
Bettina Szerencsés ◽  
Attila Gácser ◽  
Gabriella Endre ◽  
Ildikó Domonkos ◽  
Hilda Tiricz ◽  
...  

The increasing rate of fungal infections causes global problems not only in human healthcare but agriculture as well. To combat fungal pathogens limited numbers of antifungal agents are available therefore alternative drugs are needed. Antimicrobial peptides are potent candidates because of their broad activity spectrum and their diverse mode of actions. The model legume Medicago truncatula produces >700 nodule specific cysteine-rich (NCR) peptides in symbiosis and many of them have in vitro antimicrobial activities without considerable toxicity on human cells. In this work we demonstrate the anticandidal activity of the NCR335 and NCR169 peptide derivatives against five Candida species by using the micro-dilution method, measuring inhibition of biofilm formation with the XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay, and assessing the morphological change of dimorphic Candida species by microscopy. We show that both the N- and C-terminal regions of NCR335 possess anticandidal activity as well as the C-terminal sequence of NCR169. The active peptides inhibit biofilm formation and the yeast-hypha transformation. Combined treatment of C. auris with peptides and fluconazole revealed synergistic interactions and reduced 2-8-fold the minimal inhibitory concentrations. Our results demonstrate that shortening NCR peptides can even enhance and broaden their anticandidal activity and therapeutic potential.


2010 ◽  
Vol 59 (10) ◽  
pp. 1225-1234 ◽  
Author(s):  
H. M. H. N. Bandara ◽  
O. L. T. Lam ◽  
R. M. Watt ◽  
L. J. Jin ◽  
L. P. Samaranayake

The objective of this study was to evaluate the effect of the bacterial endotoxin LPS on Candida biofilm formation in vitro. The effect of the LPS of Pseudomonas aeruginosa, Klebsiella pneumoniae, Serratia marcescens and Salmonella typhimurium on six different species of Candida, comprising Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA 646, was studied using a standard biofilm assay. The metabolic activity of in vitro Candida biofilms treated with LPS at 90 min, 24 h and 48 h was quantified by XTT reduction assay. Viable biofilm-forming cells were qualitatively analysed using confocal laser scanning microscopy (CLSM), while scanning electron microscopy (SEM) was employed to visualize the biofilm structure. Initially, adhesion of C. albicans was significantly stimulated by Pseudomonas and Klebsiella LPS. A significant inhibition of Candida adhesion was noted for the following combinations: C. glabrata with Pseudomonas LPS, C. tropicalis with Serratia LPS, and C. glabrata, C. parapsilosis or C. dubliniensis with Salmonella LPS (P<0.05). After 24 h of incubation, a significant stimulation of initial colonization was noted for the following combinations: C. albicans/C. glabrata with Klebsiella LPS, C. glabrata/C. tropicalis/C. krusei with Salmonella LPS. In contrast, a significant inhibition of biofilm formation was observed in C. glabrata/C. dubliniensis/C. krusei with Pseudomonas LPS, C. krusei with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. parapsilosis/C. dubliniensis /C. krusei with Salmonella LPS (P<0.05). On further incubation for 48 h, a significant enhancement of biofilm maturation was noted for the following combinations: C. glabrata/C. tropicalis with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. glabrata with Salmonella LPS, and a significant retardation was noted for C. parapsilosis/C. dubliniensis/C. krusei with Pseudomonas LPS, C. tropicalis with Serratia LPS, C. glabrata/C. parapsilosis/C. dubliniensis with Klebsiella LPS and C. dubliniensis with Salmonella LPS (P<0.05). These findings were confirmed by SEM and CLSM analyses. In general, the inhibition of the biofilm development of LPS-treated Candida spp. was accompanied by a scanty architecture with a reduced numbers of cells compared with the profuse and densely colonized control biofilms. These data are indicative that bacterial LPSs modulate in vitro Candida biofilm formation in a species-specific and time-dependent manner. The clinical and the biological relevance of these findings have yet to be explored.


Sign in / Sign up

Export Citation Format

Share Document