scholarly journals Crystal preferred orientation of olivine in mantle xenoliths from Catalonia (NE Spain) Orientación cristalina preferente del olivino en xenolitos mantélicos de Cataluña (NE de España)

2018 ◽  
Vol 36 (36) ◽  
pp. 119
Author(s):  
M. Fernández-Roig ◽  
G. Galán ◽  
E. Mariani

Abstract: Mantle xenoliths in Neogene-Quaternary alkaline volcanic rocks from the Catalan Volcanic Zone indicate that ≪anhydrous≫ spinel lherzolites, harzburgites and much subordinate olivine websterites form the lithospheric mantle of NE Iberian Peninsula. Olivine crystal preferred orientation, determined by indexation of electron-backscattered diffraction patterns, provides three types of deformation fabric: a dominant [010]-fiber type in peridotites and websterites equilibrated at high temperature, and subordinate orthorhombic and [100]-fiber types, which appear mostly in porphyroclas tic and equigranular lherzolites equilibrated at lower temperature.Keywords: Lithospheric mantle, lherzolites, harzburgites, websterites, olivine, deformation fabric.Resumen: Los xenolitos mantelitos en lavas alcalinas neógeno-cuaternarias de la Zona Volcánica de Cataluña indican que lherzolitas y harzburgitas ≪ anhidras≫  y con espinela son las rocas predominantes en el manto litosférico del NE de la Península Ibérica, con presencia también subordinada de websteritas olivínicas. Las orientaciones cristalográficas preferentes del olivino, determinadas por indexación de los espectros de difracción de electrones retrodispersados, muestran tres tipos de fábrica de deformación: una dominante, tipo axial [010], en peridotitas y websteritas equilibradas a alta temperatura, y otras subordinadas, de tipo ortorrómbico y axial [100], que aparecen en lherzolitas porfidoclásticas y equigranulares equilibradas a menor temperatura.Palabras clave: Manto litosférico, lherzolitas, harzburgitas, websterita, olivino, fábricas de deformación

2021 ◽  
pp. M56-2019-44
Author(s):  
Philip T. Leat ◽  
Aidan J. Ross ◽  
Sally A. Gibson

AbstractAbundant mantle-derived ultramafic xenoliths occur in Cenozoic (7.7-1.5 Ma) mafic alkaline volcanic rocks along the former active margin of West Antarctica, that extends from the northern Antarctic Peninsula to Jones Mountains. The xenoliths are restricted to post-subduction volcanic rocks that were emplaced in fore-arc or back-arc positions relative to the Mesozoic-Cenozoic Antarctic Peninsula volcanic arc. The xenoliths are spinel-bearing, include harzburgites, lherzolites, wehrlites and pyroxenites, and provide the only direct evidence of the composition of the lithospheric mantle underlying most of the margin. The harzburgites may be residues of melt extraction from the upper mantle (in a mid-ocean ridge type setting), that accreted to form oceanic lithosphere, which was then subsequently tectonically emplaced along the active Gondwana margin. An exposed highly-depleted dunite-serpentinite upper mantle complex on Gibbs Island, South Shetland Islands, supports this interpretation. In contrast, pyroxenites, wehrlites and lherzolites reflect percolation of mafic alkaline melts through the lithospheric mantle. Volatile and incompatible trace element compositions imply that these interacting melts were related to the post-subduction magmatism which hosts the xenoliths. The scattered distribution of such magmatism and the history of accretion suggest that the dominant composition of sub-Antarctic Peninsula lithospheric mantle is likely to be harzburgitic.


Geology ◽  
2020 ◽  
Vol 48 (7) ◽  
pp. 733-736 ◽  
Author(s):  
Weikai Li ◽  
Zhiming Yang ◽  
Massimo Chiaradia ◽  
Yong Lai ◽  
Chao Yu ◽  
...  

Abstract The redox state of Earth’s upper mantle in several tectonic settings, such as cratonic mantle, oceanic mantle, and mantle wedges beneath magmatic arcs, has been well documented. In contrast, oxygen fugacity () data of upper mantle under orogens worldwide are rare, and the mechanism responsible for the mantle condition under orogens is not well constrained. In this study, we investigated the of mantle xenoliths derived from the southern Tibetan lithospheric mantle beneath the Himalayan orogen, and that of postcollisional ultrapotassic volcanic rocks hosting the xenoliths. The of mantle xenoliths ranges from ΔFMQ = +0.5 to +1.2 (where ΔFMQ is the deviation of log from the fayalite-magnetite-quartz buffer), indicating that the southern Tibetan lithospheric mantle is more oxidized than cratonic and oceanic mantle, and it falls within the typical range of mantle wedge values. Mineralogical evidence suggests that water-rich fluids and sediment melts liberated from both the subducting Neo-Tethyan oceanic slab and perhaps the Indian continental plate could have oxidized the southern Tibetan lithospheric mantle. The conditions of ultrapotassic magmas show a shift toward more oxidized conditions during ascent (from ΔFMQ = +0.8 to +3.0). Crustal evolution processes (e.g., fractionation) could influence magmatic , and thus the redox state of mantle-derived magma may not simply represent its mantle source.


2020 ◽  
Author(s):  
Hubert Mazurek ◽  
Jakub Ciążela ◽  
Magdalena Matusiak-Małek ◽  
Jacek Puziewicz ◽  
Theodoros Ntaflos

<p>Migration of strategic metals through the lithospheric mantle can be tracked by sulfides in mantle xenoliths. Cenozoic mafic volcanic rocks from the SW Poland (Lower Silesia, Bohemian Massif) host a variety of subcontinental lithospheric mantle (SCLM) xenoliths. To understand metal migration in the SCLM we studied metal budget of peridotites from the Wilcza Góra basanite and their metasomatic history.</p><p>The Wilcza Góra xenoliths are especially appropriate to study metasomatic processes as they consist of 1) peridotites with Ol<sub>Fo=89.1-91.5 </sub>representing depleted mantle (group A); 2) peridotites with Ol<sub>Fo=84.2-89.2</sub> representing melt-metasomatized mantle (group B), as well as 3) hornblende-clinopyroxenites and websterites with Ol<sub>Fo=77.2-82.5</sub> representing former melt  channels (group C; Matusiak-Małek et al., 2017). The inherent sulfides are either interstitial or enclosed in the silicates. High-temperature exsolutions of pyrrhotite (Po), pentlandite (Pn) and chalcopyrite (Ccp) indicate magmatic origin of the sulfides.</p><p>The three peridotitic groups differ by sulfide mode and composition. The sulfide modes are enhanced in group C (0.022-0.963 vol.‰) and group B (<0.028 vol. ‰) with respect to group A (<0.002 vol.‰). The sulfides of group C are Ni-poor and Fe-Cu-rich as reflected in their mineral composition (Po<sub>55-74</sub>Ccp<sub>1-2</sub>Pn<sub>24-44</sub> in group A, Po<sub>67-85</sub>Ccp<sub>1-6</sub>Pn<sub>14-33</sub>, in group B and Po<sub>80-97</sub>Ccp<sub>1-7</sub>Pn<sub>2-20 </sub>in group C) and major element chemical composition. Ni/(Ni+Fe) of pentlandite is the lowest in group C (~0.25) and the highest in group A (0.54-0.61). Cu/(Cu+Fe) of chalcopyrite is 0.32-0.49 in group C contrasting to~0.50 in groups A and B. </p><p>The sulfide-rich xenoliths of group C indicate an important role of pyroxenitic veins in transporting Fe-Cu-S-rich melts from the upper mantle to the crust. However, the moderately enhanced sulfide modes in melt-mantle reaction zones represented by xenoliths of group B demonstrate that the upper continental mantle is refertilized with these melts during their ascent. Hence, significant portion of S and metals remains in the mantle never reaching the crust, as has been previously observed in the oceanic lithosphere (Ciazela et al., 2018).</p><p> </p><p><strong>Acknowledgments:</strong> This study was supported by the NCN project no. UMO-2014/15/B/ST10/00095. The EPMA analyses were funded from the Polish-Austrian project WTZ PL 08/2018.</p><p> </p><p><strong>References:</strong></p><p>Ciazela, J., Koepke, J., Dick, H. J. B., Botcharnikov, R., Muszynski, A., Lazarov, M., Schuth, S., Pieterek, B. & Kuhn, T. (2018). Sulfide enrichment at an oceanic crust-mantle transition zone: Kane Megamullion (23 N, MAR). Geochimica et Cosmochimica Acta, 230, 155-189</p><p>Matusiak-Małek, M., Puziewicz, J., Ntaflos, T., Grégoire, M., Kukuła, A. & Wojtulek P.   M. (2017). Origin and evolution of rare amphibole-bearing mantle peridotites from Wilcza Góra (SW Poland), Central Europe. Lithos 286–287, 302–323.</p>


2021 ◽  
pp. M56-2021-26
Author(s):  
A. P. Martin

AbstractThis chapter reviews the geochemistry and petrology of mantle peridotite xenoliths from across Antarctica, including parameters that are of most relevance to geophysical studies. This Memoir is the first time such a complete overview of the chemistry of Antarctic mantle xenoliths has been available and Antarctica should no longer be the ignored continent in studies of mantle xenoliths in volcanic rocks. Xenoliths indicate that the chemistry, heat flow and water content of the Antarctic lithospheric mantle varies regionally at scales of one to thousands of kilometres. The prevalence of variability in xenoliths suggests that the Antarctic mantle is ubiquitously heterogeneous. This has important, yet unquantified, implications for interpreting geophysical data and for reference Earth models used in Antarctic geophysical studies. Information about and interpretations of Antarctic mantle xenoliths can be linked to studies from once adjacent continental blocks in Africa, India, Australia, New Zealand and South America. Together, this can improve understanding of the mantle contribution to glacial isostatic adjustment and geodynamic models to show how the Antarctic mantle fits with adjacent continents in the puzzle of lithospheric blocks. Numerous, fundamental and important research questions remain unanswered making further study of the Antarctic mantle an exciting prospect for future research.


Author(s):  
Asish C. Nag ◽  
Lee D. Peachey

Cat extraocular muscles consist of two regions: orbital, and global. The orbital region contains predominantly small diameter fibers, while the global region contains a variety of fibers of different diameters. The differences in ultrastructural features among these muscle fibers indicate that the extraocular muscles of cats contain at least five structurally distinguishable types of fibers.Superior rectus muscles were studied by light and electron microscopy, mapping the distribution of each fiber type with its distinctive features. A mixture of 4% paraformaldehyde and 4% glutaraldehyde was perfused through the carotid arteries of anesthetized adult cats and applied locally to exposed superior rectus muscles during the perfusion.


2001 ◽  
Vol 90 (3) ◽  
pp. 770-776 ◽  
Author(s):  
K. Vijayan ◽  
J. L. Thompson ◽  
K. M. Norenberg ◽  
R. H. Fitts ◽  
D. A. Riley

Slow oxidative (SO) fibers of the adductor longus (AL) were predominantly damaged during voluntary reloading of hindlimb unloaded (HU) rats and appeared explainable by preferential SO fiber recruitment. The present study assessed damage after eliminating the variable of voluntary recruitment by tetanically activating all fibers in situ through the motor nerve while applying eccentric (lengthening) or isometric contractions. Muscles were aldehyde fixed and resin embedded, and semithin sections were cut. Sarcomere lesions were quantified in toluidine blue-stained sections. Fibers were typed in serial sections immunostained with antifast myosin and antitotal myosin (which highlights slow fibers). Both isometric and eccentric paradigms caused fatigue. Lesions occurred only in eccentrically contracted control and HU muscles. Fatigue did not cause lesions. HU increased damage because lesioned- fiber percentages within fiber types and lesion sizes were greater than control. Fast oxidative glycolytic (FOG) fibers were predominantly damaged. In no case did damaged SO fibers predominate. Thus, when FOG, SO, and hybrid fibers are actively lengthened in chronically unloaded muscle, FOG fibers are intrinsically more susceptible to damage than SO fibers. Damaged hybrid-fiber proportions ranged between these extremes.


2013 ◽  
Vol 151 (5) ◽  
pp. 765-776 ◽  
Author(s):  
GI YOUNG JEONG ◽  
CHANG-SIK CHEONG ◽  
KEEWOOK YI ◽  
JEONGMIN KIM ◽  
NAMHOON KIM ◽  
...  

AbstractThe Phanerozoic subduction system of the Korean peninsula is considered to have been activated by at least Middle Permian time. The geochemically arc-like Andong ultramafic complex (AUC) occurring along the border between the Precambrian Yeongnam massif and the Cretaceous Gyeongsang back-arc basin provides a rare opportunity for direct study of the pre-Cretaceous mantle wedge lying above the subduction zone. The tightly constrained SHRIMP U–Pb age of zircons extracted from orthopyroxenite specimens (222.1±1.0 Ma) is indistinguishable from the Ar/Ar age of coexisting phlogopite (220±6 Ma). These ages represent the timing of suprasubduction zone magmatism likely in response to the sinking of cold and dense oceanic lithosphere and the resultant extensional strain regime in a nascent arc environment. The nearly coeval occurrence of a syenite-gabbro-monzonite suite in the SW Yeongnam massif also suggests an extensional tectonic setting along the continental margin side during Late Triassic time. The relatively enriched ɛHf range of dated zircons (+6.2 to −0.6 at 222 Ma) is in contrast to previously reported primitive Sr–Nd–Hf isotopic features of Cenozoic mantle xenoliths from Korea and eastern China. This enrichment is not ascribed to contamination by the hypothetical Palaeozoic crust beneath SE Korea, but is instead attributable to metasomatism of the lithospheric mantle during the earlier subduction of the palaeo-Pacific plate. Most AUC zircons show a restricted core-to-rim spread of ɛHf values, but some grains testify to the operation of open-system processes during magmatic differentiation.


Sign in / Sign up

Export Citation Format

Share Document