Earthquakes Induced by Wastewater Injection, Part II: Statistical Evaluation of Causal Factors and Seismicity Rate Forecasting

2020 ◽  
Vol 110 (5) ◽  
pp. 2483-2497 ◽  
Author(s):  
Iason Grigoratos ◽  
Ellen Rathje ◽  
Paolo Bazzurro ◽  
Alexandros Savvaidis

ABSTRACT Wastewater disposal has been reported as the main cause of the recent surge in seismicity rates in several parts of central United States, including Oklahoma. In this article, we employ the semi-empirical model of the companion article (Grigoratos, Rathje, et al., 2020) first to test the statistical significance of this prevailing hypothesis and then to forecast seismicity rates in Oklahoma given future injection scenarios. We also analyze the observed magnitude–frequency distributions, arguing that the reported elevated values of the Gutenberg–Richter b-value are an artifact of the finiteness of the pore-pressure perturbation zones and a more appropriate value would be close to 1.0. The results show that the vast majority (76%) of the seismically active blocks in Oklahoma can be associated with wastewater disposal at a 95% confidence level. These blocks experienced 84% of the felt seismicity in Oklahoma after 2006, including the four largest earthquakes. In terms of forecasting power, the model is able to predict the evolution of the seismicity burst starting in 2014, both in terms of timing and magnitude, even when only using seismicity data through 2011 to calibrate the model. Under the current disposal rates, the seismicity is expected to reach the pre-2009 levels after 2025, whereas the probability of a potentially damaging Mw≥5.5 event between 2018 and 2026 remains substantial at around 45%.

Author(s):  
Iason Grigoratos ◽  
Ellen Rathje ◽  
Paolo Bazzurro ◽  
Alexandros Savvaidis

ABSTRACT In the past decade, several parts of central United States, including Oklahoma, have experienced unprecedented seismicity rates, following an increase in the volumes of wastewater fluids that are being disposed underground. In this article, we present a semi-empirical model to hindcast the observed seismicity given the injection time history. Our proposed recurrence model is a modified version of the Gutenberg–Richter relation, building upon the seismogenic index model, which predicts a linear relationship between the number of induced events and the injected volume. Our methodology accounts for the effects of spatiotemporal pore-pressure diffusion, the stressing-rate dependency of the time lag between injection and seismicity rate changes, and the rapid cessation of seismicity upon unloading. We also introduced a novel multiscale regression, which enabled us to produce grid-independent results of increased spatial resolution. Although the model is generic to be applicable in any region and has essentially only two free parameters for spatial calibration, it matches the earthquake time history of Oklahoma well across various scales, for both increasing and decreasing injection rates. In the companion paper (Grigoratos, Rathje, et al., 2020), we employ the model to distinguish the disposal-induced seismicity from the expected tectonic seismicity and test its forecasting potential.


Author(s):  
Jeremy Maurer ◽  
Deborah Kane ◽  
Marleen Nyst ◽  
Jessica Velasquez

ABSTRACT The U.S. Geological Survey (USGS) has for each year 2016–2018 released a one-year seismic hazard map for the central and eastern United States (CEUS) to address the problem of induced and triggered seismicity (ITS) in the region. ITS in areas with historically low rates of earthquakes provides both challenges and opportunities to learn about crustal conditions, but few scientific studies have considered the financial risk implications of damage caused by ITS. We directly address this issue by modeling earthquake risk in the CEUS using the 1 yr hazard model from the USGS and the RiskLink software package developed by Risk Management Solutions, Inc. We explore the sensitivity of risk to declustering and b-value, and consider whether declustering methods developed for tectonic earthquakes are suitable for ITS. In particular, the Gardner and Knopoff (1974) declustering algorithm has been used in every USGS hazard forecast, including the recent 1 yr forecasts, but leads to the counterintuitive result that earthquake risk in Oklahoma is at its highest level in 2018, even though there were one-fifth as many earthquakes as occurred in 2016. Our analysis shows that this is a result of (1) the peculiar characteristics of the declustering algorithm with space-varying and time-varying seismicity rates, (2) the fact that the frequency–magnitude distribution of earthquakes in Oklahoma is not well described by a single b-value, and (3) at later times, seismicity is more spatially diffuse and seismicity rate increases are closer to more populated areas. ITS in Oklahoma may include a combination of swarm-like events with tectonic-style events, which have different frequency–magnitude and aftershock distributions. New algorithms for hazard estimation need to be developed to account for these unique characteristics of ITS.


Author(s):  
Alireza Babaie Mahani

Critical analysis of induced earthquake occurrences requires comprehensive datasets obtained by dense seismographic networks. In this study, using such datasets, I take a detailed investigation into induced seismicity that occurred in the Montney play of northeast British Columbia, mostly caused by hydraulic fracturing. The frequency-magnitude distribution (FMD) of earthquakes in several temporal and spatial clusters, show fundamental discrepancies between seismicity in the southern Montney play (2014-2018) and the northern area (2014-2016). In both regions, FMDs follow the linear Gutenberg-Richter (G-R) relationship for magnitudes up to 2-3. While in the southern Montney, within the Fort St. John graben complex, the number of earthquakes at larger magnitudes falls off rapidly below the G-R line, within the northern area with a dominant compressional regime, the number of events increases above the G-R line. This systematic difference may have important implications with regard to seismic hazard assessments from induced seismicity in the two regions, although caution in the interpretation is warranted due to local variabilities. While for most clusters within the southern Montney area, the linear or truncated G-R relationship provide reliable seismicity rates for events below magnitude 4, the G-R relationship underestimates the seismicity rate for magnitudes above 3 in northern Montney. Using a well-located dataset of earthquakes in southern Montney, one can observe generally that 1) seismic productivity correlates well with the injected volume during hydraulic fracturing and 2) there is a clear depth dependence for the G-R b-value; clusters with deeper median depths show lower b-values than those with shallower depths.


Author(s):  
Robert J. Skoumal ◽  
Elizabeth S. Cochran

Abstract Wastewater disposal is primarily responsible for the increased seismicity rate since ∼2013 in southern Kansas. Previous work that used shear-wave splitting (SWS) in southern Kansas interpreted an ∼90° temporal rotation in the fast polarization direction and attributed it to increased pore pressures resulting from fluid injection. However, this interpreted rotation coincided with a change in the stations used to make the SWS measurements. We investigate the temporal variability of fast azimuths in southern Kansas by making SWS measurements on earthquake families with similar source–receiver paths recorded on a stable local seismic network. We select high-quality SWS measurements by investigating the stability of results across 65 different frequency bands between 0.5 and 15 Hz. We find that the fast polarization direction in southern Kansas is relatively constant with an average east-northeast (∼N79°E) orientation between 2014 and 2017. Our fast polarization measurements are primarily a reflection of the maximum principal horizontal stress direction (SHmax). We observe a slight spatial change in SHmax to the northeast (∼N55°E) near the Nemaha ridge in Oklahoma. However, we do not observe any significant temporal rotation of SHmax or variation in delay time (i.e., crack density) in southern Kansas, contrary to the earlier study. The previously interpreted ∼90° rotation may either be a reflection of a very local stress change or a misinterpretation of SWS results potentially due to the use of inconsistent source–receiver paths. Our SWS measurements cover the period of peak wastewater disposal and seismicity rates and suggest an absence of significant temporal rotations in the local anisotropy and stress orientations associated with wastewater disposal.


2012 ◽  
Vol 12 (4) ◽  
pp. 859-866 ◽  
Author(s):  
G. Chouliaras ◽  
G. Drakatos ◽  
K. Makropoulos ◽  
N. S. Melis

Abstract. Santorini is the most active volcanic complex in the South Aegean Volcanic Arc. To improve the seismological network detectability of the seismicity in this region, the Institute of Geodynamics of the National Observatory of Athens (NOA) recently installed 4 portable seismological stations supplementary to the 3 permanent stations operating in the region. The addition of these stations has significantly improved the detectability and reporting of the local seismic activity in the NOA instrumental seismicity catalogue. In this study we analyze quantitatively the seismicity of the Santorini volcanic complex. The results indicate a recent significant reporting increase mainly for events of small magnitude and an increase in the seismicity rate by more than 100%. The mapping of the statistical significance of the rate change with the z-value method reveals that the rate increase exists primarily in the active fault zone perpendicular to the extensional tectonic stress regime that characterizes this region. The spatial distribution of the b-value around the volcanic complex indicates a low b-value distribution parallel to the extensional stress field, while the b-value cross section of the volcanic complex indicates relatively high b-values under the caldera and a significant b-value decrease with depth. These results are found to be in general agreement with the results from other volcanic regions and they encourage further investigations concerning the seismic and volcanic hazard and risk estimates for the Santorini volcanic complex using the NOA earthquake catalogue.


2020 ◽  
Vol 224 (2) ◽  
pp. 1174-1187
Author(s):  
Matteo Taroni ◽  
Aybige Akinci

SUMMARY The classical procedure of the probabilistic seismic hazard analysis (PSHA) requires a Poissonian distribution of earthquakes. Seismic catalogues follow a Poisson distribution just after the application of a declustering algorithm that leaves only one earthquake for each seismic sequence (usually the stronger, i.e. the main shock). Removing earthquakes from the seismic catalogues leads to underestimation of the annual rates of the events and consequently associate with low seismic hazard as indicated by several studies. In this study, we aim investigating the performance of two declustering methods on the Italian instrumental catalogue and the impact of declustering on estimation of the b-value and on the seismic hazard analysis. To this end, first the spatial variation in the seismicity rate was estimated from the declustered catalogues using the adaptive smoothed seismicity approach, considering small earthquakes (Mw ≥ 3.0). We then corrected the seismicity rates using new approach that allows for counting all events in the complete seismic catalogue by simply changing the magnitude frequency distribution. The impact of declustering on seismic hazard analysis is illustrated using PSHA maps in terms of peak ground acceleration and spectral acceleration in 2 s, with 10 per cent and 2 per cent probability of exceedance in 50 yr, for Italy. We observed that the hazard calculated from the declustered catalogues was always lower than the hazard computed using the complete catalogue. These results are in agreement with previous results obtained in different parts of the world.


Author(s):  
Laura Gulia ◽  
Paolo Gasperini

Abstract Artifacts often affect seismic catalogs. Among them, the presence of man-made contaminations such as quarry blasts and explosions is a well-known problem. Using a contaminated dataset reduces the statistical significance of results and can lead to erroneous conclusions, thus the removal of such nonnatural events should be the first step for a data analyst. Blasts misclassified as natural earthquakes, indeed, may artificially alter the seismicity rates and then the b-value of the Gutenberg and Richter relationship, an essential ingredient of several forecasting models. At present, datasets collect useful information beyond the parameters to locate the earthquakes in space and time, allowing the users to discriminate between natural and nonnatural events. However, selecting them from webservices queries is neither easy nor clear, and part of such supplementary but fundamental information can be lost during downloading. As a consequence, most of statistical seismologists ignore the presence in seismic catalog of explosions and quarry blasts and assume that they were not located by seismic networks or in case they were eliminated. We here show the example of the Italian Seismological Instrumental and Parametric Database. What happens when artificial seismicity is mixed with natural one?


1983 ◽  
Vol 73 (1) ◽  
pp. 219-236
Author(s):  
M. Wyss ◽  
R. E. Habermann ◽  
Ch. Heiniger

abstract The rate of occurrence of earthquakes shallower than 100 km during the years 1963 to 1980 was studied as a function of time and space along the New Hebrides island arc. Systematic examination of the seismicity rates for different magnitude bands showed that events with mb < 4.8 were not reported consistently over time. The seismicity rate as defined by mb ≧ 4.8 events was examined quantitatively and systematically in the source volumes of three recent main shocks and within two seismic gaps. A clear case of seismic quiescence could be shown to have existed before one of the large main shocks if a major asperity was excluded from the volume studied. The 1980 Ms = 8 rupture in the northern New Hebrides was preceded by a pattern of 9 to 12 yr of quiescence followed by 5 yr of normal rate. This pattern does not conform to the hypothesis that quiescence lasts up to the mainshock which it precedes. The 1980 rupture also did not fully conform to the gap hypothesis: half of its aftershock area covered part of a great rupture which occurred in 1966. A major asperity seemed to play a critical role in the 1966 and 1980 great ruptures: it stopped the 1966 rupture, and both parts of the 1980 double rupture initiated from it. In addition, this major asperity made itself known by a seismicity rate and stress drops higher than in the surrounding areas. Stress drops of 272 earthquakes were estimated by the MS/mb method. Time dependence of stress drops could not be studied because of changes in the world data set of Ms and mb values. Areas of high stress drops did not correlate in general with areas of high seismicity rate. Instead, outstandingly high average stress drops were observed in two plate boundary segments with average seismicity rate where ocean floor ridges are being subducted. The seismic gaps of the central and northern New Hebrides each contain seismically quiet regions. In the central New Hebrides, the 50 to 100 km of the plate boundary near 18.5°S showed an extremely low seismicity rate during the entire observation period. Low seismicity could be a permanent property of this location. In the northern New Hebrides gap, seismic quiescence started in mid-1972, except in a central volume where high stress drops are observed. This volume is interpreted as an asperity, and the quiescence may be interpreted as part of the preparation process to a future large main shock near 13.5°S.


1992 ◽  
Vol 82 (3) ◽  
pp. 1306-1349 ◽  
Author(s):  
Javier F. Pacheco ◽  
Lynn R. Sykes

Abstract We compile a worldwide catalog of shallow (depth < 70 km) and large (Ms ≥ 7) earthquakes recorded between 1900 and 1989. The catalog is shown to be complete and uniform at the 20-sec surface-wave magnitude Ms ≥ 7.0. We base our catalog on those of Abe (1981, 1984) and Abe and Noguchi (1983a, b) for events with Ms ≥ 7.0. Those catalogs, however, are not homogeneous in seismicity rates for the entire 90-year period. We assume that global rates of seismicity are constant on a time scale of decades and most inhomogeneities arise from changes in instrumentation and/or reporting. We correct the magnitudes to produce a homogeneous catalog. The catalog is accompanied by a reference list for all the events with seismic moment determined at periods longer than 20 sec. Using these seismic moments for great and giant earthquakes and a moment-magnitude relationship for smaller events, we produce a seismic moment catalog for large earthquakes from 1900 to 1989. The catalog is used to study the distribution of moment released worldwide. Although we assumed a constant rate of seismicity on a global basis, the rate of moment release has not been constant for the 90-year period because the latter is dominated by the few largest earthquakes. We find that the seismic moment released at subduction zones during this century constitutes 90% of all the moment released by large, shallow earthquakes on a global basis. The seismic moment released in the largest event that occurred during this century, the 1960 southern Chile earthquake, represents about 30 to 45% of the total moment released from 1900 through 1989. A frequency-size distribution of earthquakes with seismic moment yields an average slope (b value) that changes from 1.04 for magnitudes between 7.0 and 7.5 to b = 1.51 for magnitudes between 7.6 and 8.0. This change in the b value is attributed to different scaling relationships between bounded (large) and unbounded (small) earthquakes. Thus, the earthquake process does have a characteristic length scale that is set by the downdip width over which rupture in earthquakes can occur. That width is typically greater for thrust events at subduction zones than for earthquakes along transform faults and other tectonic environments.


Sign in / Sign up

Export Citation Format

Share Document