Seismic Activity in the Central Adriatic Offshore of Italy: A Review of the 1987 ML 5 Porto San Giorgio Earthquake

Author(s):  
Elvira Battimelli ◽  
Guido Maria Adinolfi ◽  
Ortensia Amoroso ◽  
Paolo Capuano

ABSTRACT On 3 July 1987, a seismic sequence, with a mainshock of ML 5, took place in the offshore Adriatic, close to the coast of Porto San Giorgio (PSG), Italy. We present an accurate relocation of the PSG seismic sequence using a nonlinear probabilistic approach (Lomax et al., 2000). The trade‐off between the hypocentral location and the velocity model was exhaustively explored using six different velocity models available for the area provided by previous studies. Through numerous tests performed by relocating the mainshock, we selected the two best velocity models providing two different depths (2.0 and 18.0 km). To resolve this intrinsic ambiguity, we developed a technique that uses the macroseismic intensity field data based on a grid search of the magnitude–depth space. The results show that the mainshock has a depth of 5.7 km and a magnitude (ML) equal to 5; moreover, the relocated seismic sequence (∼30 events) developed in the upper portion of the crust (at a depth less than 15 km), thus activating thrust faults, which is typical of the main geological features that characterize the outer Apennines thrust belt and the Adriatic foreland folds. Because the Adriatic Sea hosts several hydrocarbon (mainly gas) production fields located near active faults, with some of them in the area of this study, analyzing the instrumental seismicity is necessary to better understand the seismicity generated by these seismogenic faults and improve the assessment of the area’s seismic hazards.


2021 ◽  
Author(s):  
Francesca D’Ajello Caracciolo ◽  
Rodolfo Console

AbstractA set of four magnitude Ml ≥ 3.0 earthquakes including the magnitude Ml = 3.7 mainshock of the seismic sequence hitting the Lake Constance, Southern Germany, area in July–August 2019 was studied by means of bulletin and waveform data collected from 86 seismic stations of the Central Europe-Alpine region. The first single-event locations obtained using a uniform 1-D velocity model, and both fixed and free depths, showed residuals of the order of up ± 2.0 s, systematically affecting stations located in different areas of the study region. Namely, German stations to the northeast of the epicenters and French stations to the west exhibit negative residuals, while Italian stations located to the southeast are characterized by similarly large positive residuals. As a consequence, the epicentral coordinates were affected by a significant bias of the order of 4–5 km to the NNE. The locations were repeated applying a method that uses different velocity models for three groups of stations situated in different geological environments, obtaining more accurate locations. Moreover, the application of two methods of relative locations and joint hypocentral determination, without improving the absolute location of the master event, has shown that the sources of the four considered events are separated by distances of the order of one km both in horizontal coordinates and in depths. A particular attention has been paid to the geographical positions of the seismic stations used in the locations and their relationship with the known crustal features, such as the Moho depth and velocity anomalies in the studied region. Significant correlations between the observed travel time residuals and the crustal structure were obtained.



2021 ◽  
Author(s):  
Andrea D'Ambrosio ◽  
Eugenio Carminati ◽  
Carlo Doglioni ◽  
Lorenzo Lipparini ◽  
Mario Anselmi ◽  
...  

<p>The Central Apennines fold-and-thrust belt (Central Italy) is characterized by the presence of several active faults, potentially capable of generating damaging earthquakes. To support seismic hazard studies over the area, a new 3D velocity model was built, integrating a wide range of surface and subsurface data.</p><p>The tectonic framework of the area (from Sulmona plain to Maiella Mt), is still debated in literature, also due to the lack of both an adequate geophysical data set and a reliable velocity model at the crustal scale.</p><p>In addition, the low number of seismic stations available for the acquisition of Vp/Vs arrival times, and the very low seismicity detected in the study area (the Sulmona and Caramanico Apennine valleys are considered as “seismic gaps”), lead to a difficult interpretation of the subsurface tectonic structures.</p><p>3D velocity modelling could well represent an important tool to support these deep crustal reconstructions as well earthquake relocation studies and could enhance the definition of seismogenic faults deep geometries, hence supporting a better risk assessment over the area of these potential locked faults.</p><p>Using the knowledge developed within the oil&gas industry as well in gas/CO<sub>2</sub> storage projects for the construction of 3D velocity models, extensively used to obtain subsurface imaging and define the geometry of the reservoirs and traps in the depth domain, a similar methodological approach was implemented over the study area.</p><p>The subsurface dataset was partially inherited by the past hydrocarbon exploration activities (e.g. seismic lines, exploration wells and sonic logs) and by the literature (e.g. time/depth regional models). Tomographic sections and relocated earthquake hypocentres were also integrated form geophysical studies. Geological maps (1:50.000 & 1:100.000 scale) represent the surface dataset that we used to create the surface interpretation of the regional geology.</p><p>As a first step, 18 2D balanced regional geological cross-sections, dip-oriented (W-E) across the Central Apennine, were built define the structural picture at regional scale. The cross-sections were built using MOVE (Petroleum Experts) and Petrel (Schlumberger) software. The following modelling step was the 3D model construction, in which the surface/subsurface data as well as all the geological sections were integrated in the final 3D structural and geological model.</p><p>The main geological layers reconstructed in the 3D model were than populated using the appropriated interval velocity values, building the final 3D velocity model in which the lateral velocity variation due to the presence of different facies/geological domains were considered.</p><p>As one of the results, we defined several 1D-velocity models coherent with the regional 3D velocity model, in which the key seismic stations and the earthquakes hypocentres dataset for the most potential seismogenic faults were included. 1D models were characterized by different degree of simplification, in order to test diverse approaches for the earthquake relocation. For this exercise, we used public dataset extracted by the analysis of microseismicity of the Sulmona basin.</p><p>We believe that the proposed approach can represents an effective method for combining geological and geophysical data to improve the subsurface and seismogenic faults interpretation, contributing to the seismic hazard assessment.</p>



2021 ◽  
Author(s):  
Guido Maria Adinolfi ◽  
Elvira Battimelli ◽  
Ortensia Amoroso ◽  
Paolo Capuano

<p>The Adriatic region has always attracted the interests of researchers involved in the study of the tectonic processes that controlled the evolution of the Alpine-Mediterranean area. It has been considered as an undeformed area, an aseismic, rigid block located between two active orogenic belts, the Apennines and External Dinarides thrust belts. Nevertheless, new scientific evidences reveal a complex structural framework in which active faults are capable to produce seismic activity not only along the borders of Adriatic Sea, but also in the offshore areas. In fact, the outer thrusts of Apennines and Dinarides orogenic belts propagated from the coasts to the offshore areas originating active, NW-SE trending anticlines and thrust faults that affects the Plio-Quaternary sequences.</p><p>Defining the seismotectonics of Adriatic domain and studying the active tectonics of the area with its seismogenic potential represent a challenge because the sea prevents direct observation of main geological and structural lineaments and the deployment of standard seismic networks for a more accurate analysis of seismicity. Despite the existence of new evidences, derived from seismic profiles and borehole data, by hydrocarbon exploration, correct seismic hazard estimates of Adriatic Sea require original and accurate data on the seismic activity that can allow to depict the number, size and geometry of seismogenic sources.</p><p>In this work, we focused our attention on the seismic sequence, consisting of about 230 events,  which occurred along the Central Adriatic coast, in the Conero offshore, during the 2013-2104, with a M<sub>L</sub> 4.9 mainshock located at 20 km far away from city of Ancona, the main city of Marche region. After a careful and innovative selection of the data recorded from the Italian National Seismic Network, operated by the Istituto Nazionale di Geofisica e Vulcanologia, the earthquakes were relocated according to a probabilistic approach. By the inversion of the polarity of the P-wave first arrivals, the focal mechanisms were estimated and finally the local magnitudes were re-calculated. Moreover, in order verify if there has been a migration of seismicity with the activation of different faults during the seismic sequence, the analysis of spatio-temporal evolution of the seismic sequence was performed. Preliminary results show that the seismic sequence was originated mainly at small depths (< 10 km) along NW-SE trending thrust fault structures as evidenced by fault plane solutions, consistent with NE-SW horizontal, maximum compression of the outer front of Apennines thrust belt, still active in the Central Adriatic offshore.</p>



2019 ◽  
Vol 37 (3) ◽  
pp. 235
Author(s):  
Alexandre Rodrigo Maul ◽  
Marco Antonio Cetale Santos ◽  
Cleverson Guizan Silva ◽  
Leonardo Márcio Teixeira da Silva ◽  
María de Los Ángeles González Farias ◽  
...  

ABSTRACT. Structurally complex areas, such as the pre-salt section in the offshore Santos Basin, SE Brazil, is a challenge to represent the geology using seismic images. One of the main causes of the observed imaging problems is the evaporitic section and its considerations about velocities used for seismic migration purposes. Some authors consider set to this section an almost constant value (close to 4,500 m/s) which approximately represents the halite velocity, the most abundant mineral in this salt formation. Others, over these models, apply the tomographic inversion or FWI schemes giving to the velocity model the mathematical support to build confident seismic images. We believe in the importance to build starting velocity models reflecting the existing geological features prior to applying the tomographic/FWI updating. In this sense, we propose the insertion of the so-called stratifications within the evaporitic section using an adaptation of the model-based seismic inversion technique. Following this new velocity model including the stratification, we suggest tomographic iterations update, or FWI, to add to the geological constrains of the model the needed mathematical convergence. Finally, in this work, we performed the seismic migration with and without inserting these geological features in the initial velocity model and compared the results.Keywords: evaporitic section, stratifications, velocity model, seismic migration, seismic image.RESUMO. Em áreas estruturalmente complexas, como na seção pré-sal da Bacia offshore de Santos, região SE do Brasil, é um desafio representar a geologia utilizando imagens sísmicas. Uma das principais causas dos problemas observados está nas considerações sobre a seção evaporítica e suas velocidades com propósito de migração sísmica. Alguns autores consideram esta seção como tendo velocidades aproximadamente constantes (próximas de 4.500 m/s), o que representa aproximadamente o comportamento da halita, o mineral mais abundante nesta seção. Outros, sobre este modelo aplicam a atualização por inversão tomográfica ou FWI para dar ao modelo de velocidades o suporte matemático necessário para construir imagens sísmicas confiáveis. Nós acreditamos na importância de construir modelos iniciais de velocidades que reflitam as características geológicas existentes antes de aplicar esta atualização tomográfica/FWI mencionada. Neste sentido, propomos a inserção das denominadas estratificações dentro da seção evaporítica, utilizando uma adaptação da técnica de inversão sísmica model-based. Seguindo este novo modelo incluindo as estratificações, sugerimos a atualização por iterações tomográficas, ou FWI, para adicionar ao controle geológico do modelo a convergência matemática necessária. Finalmente, neste trabalho, nós realizamos a migração com e sem a inserção destas características geológicas no modelo inicial de velocidades e comparamos os resultados.Palavras-chave: seção evaporítica, estratificações, modelo de velocidade, migração sísmica, imagem sísmica.



2021 ◽  
Vol 225 (2) ◽  
pp. 1020-1031
Author(s):  
Huachen Yang ◽  
Jianzhong Zhang ◽  
Kai Ren ◽  
Changbo Wang

SUMMARY A non-iterative first-arrival traveltime inversion method (NFTI) is proposed for building smooth velocity models using seismic diving waves observed on irregular surface. The new ray and traveltime equations of diving waves propagating in smooth media with undulant observation surface are deduced. According to the proposed ray and traveltime equations, an analytical formula for determining the location of the diving-wave turning points is then derived. Taking the influence of rough topography on first-arrival traveltimes into account, the new equations for calculating the velocities at turning points are established. Based on these equations, a method is proposed to construct subsurface velocity models from the observation surface downward to the bottom using the first-arrival traveltimes in common offset gathers. Tests on smooth velocity models with rugged topography verify the validity of the established equations, and the superiority of the proposed NFTI. The limitation of the proposed method is shown by an abruptly-varying velocity model example. Finally, the NFTI is applied to solve the static correction problem of the field seismic data acquired in a mountain area in the western China. The results confirm the effectivity of the proposed NFTI.



Geophysics ◽  
2008 ◽  
Vol 73 (2) ◽  
pp. S47-S61 ◽  
Author(s):  
Paul Sava ◽  
Oleg Poliannikov

The fidelity of depth seismic imaging depends on the accuracy of the velocity models used for wavefield reconstruction. Models can be decomposed in two components, corresponding to large-scale and small-scale variations. In practice, the large-scale velocity model component can be estimated with high accuracy using repeated migration/tomography cycles, but the small-scale component cannot. When the earth has significant small-scale velocity components, wavefield reconstruction does not completely describe the recorded data, and migrated images are perturbed by artifacts. There are two possible ways to address this problem: (1) improve wavefield reconstruction by estimating more accurate velocity models and image using conventional techniques (e.g., wavefield crosscorrelation) or (2) reconstruct wavefields with conventional methods using the known background velocity model but improve the imaging condition to alleviate the artifacts caused by the imprecise reconstruction. Wedescribe the unknown component of the velocity model as a random function with local spatial correlations. Imaging data perturbed by such random variations is characterized by statistical instability, i.e., various wavefield components image at wrong locations that depend on the actual realization of the random model. Statistical stability can be achieved by preprocessing the reconstructed wavefields prior to the imaging condition. We use Wigner distribution functions to attenuate the random noise present in the reconstructed wavefields, parameterized as a function of image coordinates. Wavefield filtering using Wigner distribution functions and conventional imaging can be lumped together into a new form of imaging condition that we call an interferometric imaging condition because of its similarity to concepts from recent work on interferometry. The interferometric imaging condition can be formulated both for zero-offset and for multioffset data, leading to robust, efficient imaging procedures that effectively attenuate imaging artifacts caused by unknown velocity models.



Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1226-1237 ◽  
Author(s):  
Irina Apostoiu‐Marin ◽  
Andreas Ehinger

Prestack depth migration can be used in the velocity model estimation process if one succeeds in interpreting depth events obtained with erroneous velocity models. The interpretational difficulty arises from the fact that migration with erroneous velocity does not yield the geologically correct reflector geometries and that individual migrated images suffer from poor signal‐to‐noise ratio. Moreover, migrated events may be of considerable complexity and thus hard to identify. In this paper, we examine the influence of wrong velocity models on the output of prestack depth migration in the case of straight reflector and point diffractor data in homogeneous media. To avoid obscuring migration results by artifacts (“smiles”), we use a geometrical technique for modeling and migration yielding a point‐to‐point map from time‐domain data to depth‐domain data. We discover that strong deformation of migrated events may occur even in situations of simple structures and small velocity errors. From a kinematical point of view, we compare the results of common‐shot and common‐offset migration. and we find that common‐offset migration with erroneous velocity models yields less severe image distortion than common‐shot migration. However, for any kind of migration, it is important to use the entire cube of migrated data to consistently interpret in the prestack depth‐migrated domain.



Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1202-1212 ◽  
Author(s):  
Hervé Chauris ◽  
Mark S. Noble ◽  
Gilles Lambaré ◽  
Pascal Podvin

We present a new method based on migration velocity analysis (MVA) to estimate 2‐D velocity models from seismic reflection data with no assumption on reflector geometry or the background velocity field. Classical approaches using picking on common image gathers (CIGs) must consider continuous events over the whole panel. This interpretive step may be difficult—particularly for applications on real data sets. We propose to overcome the limiting factor by considering locally coherent events. A locally coherent event can be defined whenever the imaged reflectivity locally shows lateral coherency at some location in the image cube. In the prestack depth‐migrated volume obtained for an a priori velocity model, locally coherent events are picked automatically, without interpretation, and are characterized by their positions and slopes (tangent to the event). Even a single locally coherent event has information on the unknown velocity model, carried by the value of the slope measured in the CIG. The velocity is estimated by minimizing these slopes. We first introduce the cost function and explain its physical meaning. The theoretical developments lead to two equivalent expressions of the cost function: one formulated in the depth‐migrated domain on locally coherent events in CIGs and the other in the time domain. We thus establish direct links between different methods devoted to velocity estimation: migration velocity analysis using locally coherent events and slope tomography. We finally explain how to compute the gradient of the cost function using paraxial ray tracing to update the velocity model. Our method provides smooth, inverted velocity models consistent with Kirchhoff‐type migration schemes and requires neither the introduction of interfaces nor the interpretation of continuous events. As for most automatic velocity analysis methods, careful preprocessing must be applied to remove coherent noise such as multiples.



Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 139
Author(s):  
Giancarlo Molli ◽  
Isabelle Manighetti ◽  
Rick Bennett ◽  
Jacques Malavieille ◽  
Enrico Serpelloni ◽  
...  

Based on the review of the available stratigraphic, tectonic, morphological, geodetic, and seismological data, along with new structural observations, we present a reappraisal of the potential seismogenic faults and fault systems in the inner northwest Apennines, Italy, which was the site, one century ago, of the devastating Mw ~6.5, 1920 Fivizzano earthquake. Our updated fault catalog provides the fault locations, as well as the description of their architecture, large-scale segmentation, cumulative displacements, evidence for recent to present activity, and long-term slip rates. Our work documents that a dense network of active faults, and thus potential earthquake fault sources, exists in the region. We discuss the seismogenic potential of these faults, and propose a general tectonic scenario that might account for their development.



Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
German Garabito ◽  
José Silas dos Santos Silva ◽  
Williams Lima

In land seismic data processing, the prestack time migration (PSTM) image remains the standard imaging output, but a reliable migrated image of the subsurface depends on the accuracy of the migration velocity model. We have adopted two new algorithms for time-domain migration velocity analysis based on wavefield attributes of the common-reflection-surface (CRS) stack method. These attributes, extracted from multicoverage data, were successfully applied to build the velocity model in the depth domain through tomographic inversion of the normal-incidence-point (NIP) wave. However, there is no practical and reliable method for determining an accurate and geologically consistent time-migration velocity model from these CRS attributes. We introduce an interactive method to determine the migration velocity model in the time domain based on the application of NIP wave attributes and the CRS stacking operator for diffractions, to generate synthetic diffractions on the reflection events of the zero-offset (ZO) CRS stacked section. In the ZO data with diffractions, the poststack time migration (post-STM) is applied with a set of constant velocities, and the migration velocities are then selected through a focusing analysis of the simulated diffractions. We also introduce an algorithm to automatically calculate the migration velocity model from the CRS attributes picked for the main reflection events in the ZO data. We determine the precision of our diffraction focusing velocity analysis and the automatic velocity calculation algorithms using two synthetic models. We also applied them to real 2D land data with low quality and low fold to estimate the time-domain migration velocity model. The velocity models obtained through our methods were validated by applying them in the Kirchhoff PSTM of real data, in which the velocity model from the diffraction focusing analysis provided significant improvements in the quality of the migrated image compared to the legacy image and to the migrated image obtained using the automatically calculated velocity model.



Sign in / Sign up

Export Citation Format

Share Document