High-frequency analysis of seismic background noise as a function of wind speed and shallow depth

1996 ◽  
Vol 86 (5) ◽  
pp. 1507-1515 ◽  
Author(s):  
Mitchell M. Withers ◽  
Richard C. Aster ◽  
Christopher J. Young ◽  
Eric P. Chael

Abstract We used a deep (1500 m) cased borehole near the town of Datil in west-central New Mexico to study high-frequency (>1 Hz) seismic noise characteristics. The remote site had very low levels of cultural noise, but strong winds (winter and spring) made the site an excellent candidate to study the effects of wind noise on seismograms. Along with a three-component set of surface sensors (Teledyne Geotech GS-13), a vertical borehole seismometer (GS-28) was deployed at a variety of depths (5, 43, and 85 m) to investigate signal and noise variations. Wind speed was measured with an anemometer. Event-triggered and time-triggered data streams were recorded on a RefTek 72-02 data acquisition system located at the site. Our data show little cultural noise and a strong correlation between wind speed and seismic background noise. The minimum wind speed at which the seismic background noise appears to be influenced varies with depth: 3 m/sec at the surface, 3.5 m/sec at 43 m in depth, and 4 m/sec at 85 m in depth. For wind speed below 3 to 4 m/sec, we observe omni-directional background noise that is coherent at frequencies below 15 Hz. This coherence is destroyed when wind speeds exceed 3 to 4 m/sec. We use a test event (Md ∼ 1.6) and superimposed noise to investigate signal-to-noise ratio (SNR) improvement with sensor depth. For the low Q valley fill of the Datil borehole (DBH) site, we have found that SNR can be improved by as much as 20 to 40 dB between 23 and 55 Hz and 10 to 20 dB between 10 and 20 Hz, by deploying at a 43-m depth rather than at the surface. At the surface, there is little signal above noise in the 23- to 55-Hz frequency band for wind speeds greater than 8 m/sec. Thus, high-frequency signal information that is lost at the surface can be recorded by deploying at the relatively shallow depth of 40 m. Because we observe only minor further reductions in seismic background noise (SBN) at deeper depths, 40 m is likely to be a reasonable deployment depth for other high-frequency-monitoring sites in similar environmental and geologic conditions.

2021 ◽  
Vol 92 (2A) ◽  
pp. 849-858 ◽  
Author(s):  
Santosh Kumar ◽  
R. Chaitanya Kumar ◽  
Ketan Singha Roy ◽  
Sumer Chopra

Abstract The Gujarat region, situated in the westernmost part of India, experienced a deadly intraplate 2001 Mw 7.6 Bhuj earthquake. In the aftermath of the disaster, the Institute of Seismological Research established the Gujarat (India) seismic network in 2006. The network is being operated in online and offline modes, whereas, seismicity monitoring is being done in near-real-time, using data received from the online seismic stations. The Coronavirus disease-19 lockdown provided an opportunity to assess the network reliability in a difficult and challenging scenario. The positive aspect of the lockdown is reflected in signal-to-noise ratio, which improved significantly at all the sites during the lockdown, with more prominent being at sites located on top of the Quaternary sediments due to the absence of high-frequency anthropogenic noise. A sharp fall in the seismic background noise is noticed at most of the stations during the lockdown period, with respect to the prelockdown period. We used the lockdown data to identify other natural sources of noise, besides anthropogenic. The lockdown helped in solving the enigma of seismicity in certain pockets, which turned out to be related to quarry blasts.


2021 ◽  
Vol 13 (0) ◽  
pp. 1-5
Author(s):  
Tomaš Tankeliun

The approach to reduce the amplitude noise of a vertical channel of the sampling oscilloscope is presented in this paper. In general, the vertical channel of the sampling oscilloscope consists of a high-frequency sampling circuit and a relatively low-frequency sample transmission path along with a high bit resolution analogto-digital converter. The paper presents a method to improve the sensitivity of the vertical channel of a stroboscopic oscilloscope by extending the conventional channel architecture. The main vertical channel unit of the oscilloscope is a sampling device (sampler), which made of discrete elements and usually implemented using high frequency diodes. The sampler performs a transformation of the sample of the high-frequency signal under test into a low-frequency equivalent signal (otherwise called a balance impulse). In a conventional sampling device, this pulse is quantized once the amplitude is at its highest, thus achieving the best signal-to-noise ratio. The paper analyzes the operating parameters of the sampling device circuit and their influence on the output signal of the sampler. In this approach uses the fastest (15 MHz) high-resolution (18-bit) analog-to-digital converters currently on the market to reduce the amplitude noise of vertical channel based on conventional architecture. Our research has shown that it is possible to obtain an increase in the signal-tonoise ratio of almost 1.3 times.


Author(s):  
Dawen Huang ◽  
Jianhua Yang ◽  
Jingling Zhang ◽  
Houguang Liu

The general scale transformation (GST) method is used in the bistable system to deal with the weak high-frequency signal submerged into the strong noisy background. Then, an adaptive stochastic resonance (ASR) method with the GST is put forward and realized by the quantum particle swarm optimization (QPSO) algorithm. Through the bearing fault simulation signal, the ASR method with the GST is compared with the normalized scale transformation (NST) stochastic resonance (SR). The results show that the efficiency of the GST method is higher than the NST in recognizing bearing fault feature information. In order to simulate the actual engineering environment, both the adaptive GST and the NST methods are implemented to deal with the same experimental signal, respectively. The signal-to-noise ratio (SNR) of the output is obviously improved by the GST method. Specifically, the efficiency is improved greatly to extract the weak high-frequency bearing fault feature information. Moreover, under different noise intensities, although the SNR is decreased versus the increase of the noise intensity, the ASR method with the GST is still better than the traditional NST SR. The proposed GST method and the related results might have referenced value in the problem of weak high-frequency feature extraction in engineering fields.


2014 ◽  
Vol 7 (9) ◽  
pp. 3113-3126 ◽  
Author(s):  
C. F. Lee ◽  
G. Vaughan ◽  
D. A. Hooper

Abstract. This study quantifies the uncertainties in winds measured by the Aberystwyth Mesosphere–Stratosphere–Troposphere (MST) radar (52.4° N, 4.0° W), before and after its renovation in March 2011. A total of 127 radiosondes provide an independent measure of winds. Differences between radiosonde and radar-measured horizontal winds are correlated with long-term averages of vertical velocities, suggesting an influence from local mountain waves. These local influences are an important consideration when using radar winds as a measure of regional conditions, particularly for numerical weather prediction. For those applications, local effects represent a source of sampling error additional to the inherent uncertainties in the measurements themselves. The radar renovation improved the signal-to-noise ratio (SNR) of measurements, with a corresponding improvement in altitude coverage. It also corrected an underestimate of horizontal wind speeds attributed to beam formation problems, due to pre-renovation component failure. The root mean square error (RMSE) in radar-measured horizontal wind components, averaged over half an hour, increases with wind speed and altitude, and is 0.8–2.5 m s−1 (6–12% of wind speed) for post-renovation winds. Pre-renovation values are typically 0.1 m s−1 larger. The RMSE in radial velocities is <0.04 m s−1. Eight weeks of special radar operation are used to investigate the effects of echo power aspect sensitivity. Corrections for echo power aspect sensitivity remove an underestimate of horizontal wind speeds; however aspect sensitivity is azimuthally anisotropic at the scale of routine observations (≈1 h). This anisotropy introduces random error into wind profiles. For winds averaged over half an hour, the RMSE is around 3.5% above 8 km, but as large as 4.5% in the mid-troposphere.


2019 ◽  
Vol 219 (2) ◽  
pp. 1082-1091 ◽  
Author(s):  
Johno van IJsseldijk ◽  
Elmer Ruigrok ◽  
Arie Verdel ◽  
Cornelis Weemstra

SUMMARY Global phases, viz. seismic phases that travel through the Earth’s core, can be used to locally image the crust by means of seismic interferometry. This method is known as Global Phase Seismic Interferometry (GloPSI). Traditionally, GloPSI retrieves low-frequency information (up to 1 Hz). Recent studies, however, suggest that there is high-frequency signal present in the coda of strong, distant earthquakes. This research quantifies the potential of these high-frequency signals, by analysing recordings of a multitude of high-magnitude earthquakes (≥6.4 Mw) and their coda on a selection of permanent USArray stations. Nearly half of the P, PKP and PKIKP phases are recorded with a signal-to-noise ratio of at least 5 dB at 3 Hz. To assess the viability of using the high-frequency signal, the second half of the paper highlights two case studies. First, a known sedimentary structure is imaged in Malargüe, Argentina. Secondly, the method is used to reveal the structure of the Midcontinent Rift below the SPREE array in Minnesota, USA. Both studies demonstrate that structural information of the shallow crust (≤5 km) below the arrays can be retrieved. In particular, the interpreted thickness of the sedimentary layer below the Malargüe array is in agreement with earlier studies in the same area. Being able to use global phases and direct P-phases with large epicentral distances (&gt;80°) to recover the Earth’s sedimentary structure suggests that GloPSI can be applied in an industrial context.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3257 ◽  
Author(s):  
Stefanie E. LaZerte ◽  
Hans Slabbekoorn ◽  
Ken A. Otter

Low-frequency urban noise can interfere with avian communication through masking. Some species are able to shift the frequency of their vocalizations upwards in noisy conditions, which may reduce the effects of masking. However, results from playback studies investigating whether or not such vocal changes improve audibility in noisy conditions are not clear; the responses of free-ranging individuals to shifted signals are potentially confounded by functional trade-offs between masking-related audibility and frequency-dependent signal quality. Black-capped chickadees (Poecile atricapillus) naturally sing their songs at several different frequencies as they pitch-shift to match conspecifics during song-matching contests. They are also known to switch to higher song frequencies in response to experimental noise exposure. Each male produces both high- and low-frequency songs and absolute frequency is not a signal of aggression or dominance, making this an interesting species in which to test whether higher-frequency songs are more audible than lower-frequency songs in noisy conditions. We conducted playback studies across southern and central British Columbia, Canada, using paired song stimuli (high- vs low-frequency songs, n = 24 pairs) embedded in synthetic background noise created to match typical urban sound profiles. Over the course of each playback, the signal-to-noise ratio of the song stimuli was gradually increased by raising the amplitude of the song stimuli while maintaining background noise at a constant amplitude. We evaluated variation in how quickly and aggressively territorial males reacted to each of the paired stimuli. We found that males responded more quickly to playbacks of high- than low-frequency songs when high-frequency songs were presented first, but not when low-frequency songs were first. This difference may be explained by high-frequency songs being more audible combined with a carry-over effect resulting in slower responses to the second stimulus due to habituation. We observed no difference in overall aggression between stimuli. These results suggest that high-frequency songs may be more audible under noisy conditions.


2008 ◽  
Vol 18 (1) ◽  
pp. 19-24
Author(s):  
Erin C. Schafer

Children who use cochlear implants experience significant difficulty hearing speech in the presence of background noise, such as in the classroom. To address these difficulties, audiologists often recommend frequency-modulated (FM) systems for children with cochlear implants. The purpose of this article is to examine current empirical research in the area of FM systems and cochlear implants. Discussion topics will include selecting the optimal type of FM receiver, benefits of binaural FM-system input, importance of DAI receiver-gain settings, and effects of speech-processor programming on speech recognition. FM systems significantly improve the signal-to-noise ratio at the child's ear through the use of three types of FM receivers: mounted speakers, desktop speakers, or direct-audio input (DAI). This discussion will aid audiologists in making evidence-based recommendations for children using cochlear implants and FM systems.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2796
Author(s):  
Andrzej Osuch ◽  
Ewa Osuch ◽  
Stanisław Podsiadłowski ◽  
Piotr Rybacki

In the introduction to this paper, the characteristics of Góreckie lake and the construction and operation of the wind-driven pulverizing aerator are presented. The purpose of this manuscript is to determine the efficiency of the pulverizing aerator unit in the windy conditions of Góreckie Lake. The efficiency of the pulverization aerator depends on the wind conditions at the lake. It was necessary to conduct thorough research to determine the efficiency of water flow through the pulverization segment (water pump). It was necessary to determine the rotational speed of the paddle wheel, which depended on the average wind speed. Throughout the research period, measurements of hourly average wind speed were carried out. It was possible to determine the efficiency of the machine by developing a dedicated mathematical model. The latest method was used in the research, consisting of determining the theoretical volumetric flow rates of water in the pulverizing aerator unit, based on average hourly wind speeds. Pulverization efficiency under the conditions of Góreckie Lake was determined based on 6600 average wind speeds for spring, summer and autumn, 2018. Based on the model, the theoretical efficiency of the machine was calculated, which, under the conditions of Góreckie Lake, amounted to 75,000 m3 per year.


Sign in / Sign up

Export Citation Format

Share Document