Waveform Characteristics and Focal Mechanism Solutions of Five Aftershocks of the 1983 Goodnow, New York, Earthquake by Polarization Analysis and Waveform Modeling

1991 ◽  
Vol 62 (2) ◽  
pp. 123-133 ◽  
Author(s):  
Zuyuan Liu ◽  
Robert. B. Herrmarnn ◽  
Jiakang Xie ◽  
E. Cranswick

Abstract Waveforms of the direct P-, SV- and SH-waves of five 1983 Goodnow, New York, aftershocks (mb = 1.4–3.1), locally recorded at four hard-rock sites (epicentral distances=1.9–8.0 km) with GEOS systems, were studied to obtain their focal mechanism solutions by waveform fit using both systematic search and moment tensor inversion. Both synthetic and observed data were low-pass filtered at 10 Hz to reduce sensitivity to shallow earth structure. It was discovered that only the first cycle of P-wave and S-wave appear to have pure direct body wave characteristics. The strong P- and S-coda have no stable polarization. The five aftershocks have similar locations, identical P-first motions, but varying direct S-waveforms. A layered velocity model with a P-wave velocity of 4.4 km/s in the surface layer was derived. Fault plane solutions of four events indicate reverse faulting mechanisms that have a near horizontal P-axis with a strike of ENE. This is similar to the fault plane solution of the mainshock (October 7, 1983, mb = 5.1) and the composite focal mechanism of the aftershocks. Four aftershocks occurred on the fault planes with the strike NW-N and dip of 52°–64° toward NE-E. The fifth event studied has significant strike-slip motion with the P axis is also nearly horizontal and oriented NE. The results of systematic search technique agree well with those of moment tensor inversion. The first motion directions, pulse widths, amplitudes, amplitude ratios and arrival times of the direct P-, SV- and SH-phases of the synthetic seismograms are consistent with those of the observed seismograms. The results of the research demonstrated that the S-wave amplitude can provide important constraints on the focal mechanism.

1960 ◽  
Vol 50 (4) ◽  
pp. 581-597 ◽  
Author(s):  
William Stauder

ABSTRACT Techniques of S wave analysis are used to investigate the focal mechanism of four earthquakes. In all cases the results of the S wave analysis agree with previously determined P wave solutions and conform to a dipole with moment or single couple as the point model of the focus. Further, the data from S waves select one of the two nodal planes of P as the fault plane. Small errors in the determination of the angle of polarization of S are shown to result in scatter in the data of a peculiar character which might lead to misinterpretation. The same methods of analysis which in the present instances show excellent agreement with a dipole with moment source are the methods which in a previous paper required a single force type mechanism for a different group of earthquakes.


1999 ◽  
Vol 89 (2) ◽  
pp. 373-383 ◽  
Author(s):  
Ayako Nakamura ◽  
Shigeki Horiuchi ◽  
Akira Hasegawa

Abstract We have developed a method that simultaneously determines focal mechanism solutions of many small earthquakes and source-region station corrections for short-period body-wave amplitudes by inverting amplitude data of P, SH, and SV waves, together with P-wave polarity data. The observed seismic waveform includes the effects of site amplification and attenuation along its ray path in addition to the radiation pattern of earthquake source. The amplitude of seismograms at frequencies higher than a few Hertz is extremely sensitive to heterogeneous structure near the ground surface. Consequently, we need to know in detail the effects of site amplification and attenuation in order to estimate focal mechanisms by using short-period waveforms. However, at present, we do not know the detailed crustal structure with a resolution necessary for this estimation. In the present study, we assume that P- and S-wave attenuation factors along ray paths from hypocenters to each station can be expressed as a function of hypocentral distance, backazimuth, and incident angle. Based on this assumption, we determined focal mechanism solutions of many earthquakes and the coefficients in the function for each station simultaneously, by using P-, SH-, and SV-wave amplitudes and P-wave polarities. We applied the present method to 170 aftershocks of the 1996 Onikobe earthquake (M 5.9), which occurred in the central part of northeastern Japan. We obtained focal mechanism solutions of many microearthquakes whose mechanism solutions could not be determined by using P-wave polarity data alone. P axes of almost all the obtained focal mechanism solutions are horizontal and oriented in the east-west direction. T axes are, on average, near vertical at the shallowest depth. As the depth approaches 5 km, the T axes become horizontal and then gradually become near vertical again.


1964 ◽  
Vol 54 (6B) ◽  
pp. 2199-2208 ◽  
Author(s):  
William Stauder ◽  
G. A. Bollinger

Abstract The Department of Geophysics of Saint Louis University has instituted a routine program for the determination of the focal mechanism of the larger earthquakes of each year using methods developed for the use of S waves in focal mechanism studies. Suites of records from selected stations are assembled from the WWSS microfilm file for each earthquake of interest. A combination of P-wave first motion and S-wave polarization data is then used to determine graphically the mechanism of the earthquakes. Thirty-six earthquakes of 1962 were selected for study. The focal mechanism solutions are presented for twenty-three of these shocks. There is evidence of patterns characteristic of the focal mechanism of earthquakes occurring in Kamchatka, the Aleutian Islands and South America. A complete presentation of all the data and of all the solutions is available in a more lengthy report.


1962 ◽  
Vol 52 (3) ◽  
pp. 551-572
Author(s):  
Augustine S. Furumoto

abstract In this paper the S wave method of focal mechanism determination is extended to include the ScS wave. By the establishment of the quantitative relationship between the directions of vibration of the S and the ScS, ScS wave data can be reduced to a form of S wave data usable for focal mechanism determinations. The new extension has been checked by reobtaining focal mechanism solutions for four heartquakes using ScS wave data. Results were consistent with previous solutions by the S wave method or P wave method.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hijrah Saputra ◽  
Wahyudi Wahyudi ◽  
Iman Suardi ◽  
Ade Anggraini ◽  
Wiwit Suryanto

AbstractThis study comprehensively investigates the source mechanisms associated with the mainshock and aftershocks of the Mw = 6.3 Yogyakarta earthquake which occurred on May 27, 2006. The process involved using moment tensor inversion to determine the fault plane parameters and joint inversion which were further applied to understand the spatial and temporal slip distributions during the earthquake. Moreover, coseismal slip distribution was overlaid with the relocated aftershock distribution to determine the stress field variations around the tectonic area. Meanwhile, the moment tensor inversion made use of near-field data and its Green’s function was calculated using the extended reflectivity method while the joint inversion used near-field and teleseismic body wave data which were computed using the Kikuchi and Kanamori methods. These data were filtered through a trial-and-error method using a bandpass filter with frequency pairs and velocity models from several previous studies. Furthermore, the Akaike Bayesian Information Criterion (ABIC) method was applied to obtain more stable inversion results and different fault types were discovered. Strike–slip and dip-normal were recorded for the mainshock and similar types were recorded for the 8th aftershock while the 9th and 16th June were strike slips. However, the fault slip distribution from the joint inversion showed two asperities. The maximum slip was 0.78 m with the first asperity observed at 10 km south/north of the mainshock hypocenter. The source parameters discovered include total seismic moment M0 = 0.4311E + 19 (Nm) or Mw = 6.4 with a depth of 12 km and a duration of 28 s. The slip distribution overlaid with the aftershock distribution showed the tendency of the aftershock to occur around the asperities zone while a normal oblique focus mechanism was found using the joint inversion.


1976 ◽  
Vol 66 (6) ◽  
pp. 1931-1952
Author(s):  
Donald J. Stierman ◽  
William L. Ellsworth

abstract The ML 6.0 Point Mugu, California earthquake of February 21, 1973 and its aftershocks occurred within the complex fault system that bounds the southern front of the Transverse Ranges province of southern California. P-wave fault plane solutions for 51 events include reverse, strike slip and normal faulting mechanisms, indicating complex deformation within the 10-km broad fault zone. Hypocenters of 141 aftershocks fail to delineate any single fault plane clearly associated with the main shock rupture. Most aftershocks cluster in a region 5 km in diameter centered 5 km from the main shock hypocenter and well beyond the extent of fault rupture estimated from analysis of body-wave radiation. Strain release within the imbricate fault zone was controlled by slip on preexisting planes of weakness under the influence of a NE-SW compressive stress.


1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


1983 ◽  
Vol 73 (6A) ◽  
pp. 1499-1511
Author(s):  
Paul Silver

Abstract A method is proposed for retrieving source-extent parameters from far-field body-wave data. At low frequency, the normalized P- or S-wave displacement amplitude spectrum can be approximated by |Ω^(r^,ω)| = 1 − τ2(r^)ω2/2 where r^ specifies a point on the focal sphere. For planar dislocation sources, τ2(r^) is linearly related to statistical measures of source dimension, source duration, and directivity. τ2(r^) can be measured as the curvature of |Ω^(r^,ω)| at ω = 0 or the variance of the pulse Ω^(r^,t). The quantity ωc=2τ−1(r^) is contrasted with the traditional corner frequency ω0, defined as the frequency at the intersection of the low- and high-frequency trends of |Ω^(r^,ω)|. For dislocation models without directivity, ωc(P) ≧ ωc(S) for any r^. A mean corner frequency defined by averaging τ2(r^) over the focal sphere, ω¯c=2<τ2(r^)>−1/2, satisfies ωc(P) > ωc(S) for any dislocation source. This behavior is not shared by ω0. It is shown that ω0 is most sensitive to critical times in the rupture history of the source, whereas ωc is determined by the basic parameters of source extent. Evidence is presented that ωc is the corner frequency measured on actual seismograms. Thus, the commonly observed corner frequency shift (P-wave corner greater than the S-wave corner), now viewed as a shift in ωc is simply a result of spatial finiteness and is expected to be a property of any dislocation source. As a result, the shift cannot be used as a criterion for rejecting particular dislocation models.


1990 ◽  
Vol 80 (5) ◽  
pp. 1205-1231
Author(s):  
Jiajun Zhang ◽  
Thorne Lay

Abstract Determination of shallow earthquake source mechanisms by inversion of long-period (150 to 300 sec) Rayleigh waves requires epicentral locations with greater accuracy than that provided by routine source locations of the National Earthquake Information Center (NEIC) and International Seismological Centre (ISC). The effects of epicentral mislocation on such inversions are examined using synthetic calculations as well as actual data for three large Mexican earthquakes. For Rayleigh waves of 150-sec period, an epicentral mislocation of 30 km introduces observed source spectra phase errors of 0.6 radian for stations at opposing azimuths along the source mislocation vector. This is larger than the 0.5-radian azimuthal variation of the phase spectra at the same period for a thrust fault with 15° dip and 24-km depth. The typical landward mislocation of routinely determined epicenters of shallow subduction zone earthquakes causes source moment tensor inversions of long-period Rayleigh waves to predict larger fault dip than indicated by teleseismic P-wave first-motion data. For dip-slip earthquakes, inversions of long-period Rayleigh waves that use an erroneous source location in the down-dip or along-strike directions of a nodal plane, overestimate the strike, dip, and slip of that nodal plane. Inversions of strike-slip earthquakes that utilize an erroneous location along the strike of a nodal plane overestimate the slip of that nodal plane, causing the second nodal plane to dip incorrectly in the direction opposite to the mislocation vector. The effects of epicentral mislocation for earthquakes with 45° dip-slip fault mechanisms are more severe than for events with other fault mechanisms. Existing earth model propagation corrections do not appear to be sufficiently accurate to routinely determine the optimal surface-wave source location without constraints from body-wave information, unless extensive direct path (R1) data are available or empirical path calibrations are performed. However, independent surface-wave and body-wave solutions can be remarkably consistent when the effects of epicentral mislocation are accounted for. This will allow simultaneous unconstrained body-wave and surface-wave inversions to be performed despite the well known difficulties of extracting the complete moment tensor of shallow sources from fundamental modes.


Sign in / Sign up

Export Citation Format

Share Document