scholarly journals Expression of OsPSTOL1 Improves the Phosphorus Utilization Efficiency of Transgenic Populus tomentosa

2021 ◽  
Vol 25 (03) ◽  
pp. 651-658
Author(s):  
Lu Litang

OsPSTOL1encodesa phosphorus (P) deficiency-tolerant protein expressed in the ausrice variety, Kasalash, which functions by enhancing the ability of the plant to obtain P and other nutrients; however, its role in woody plants remains unknown. In the present study, we isolated OsPSTOL1from Oryza sativa L. and subsequently generated OsPSTOL1-overexpressing transgenic Populus tomentosa. It was found that in the state of P deficiency, the transgenic P. tomentosahad a greater root length, the symptoms of P-deficiencyappeared much later, and the total nitrogen (TN) and phosphorus (TP) content was higher as compared with that of wild type plants. Upregulation of P-tolerance genes in transgenic P. tomentosaunder P-deficient conditions was analyzed by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR),the results of which were consistent with the physiological traits. In summary, these findings show thatOsPSTOL1 plays a positive role in the regulation of P uptake and utilization in transgenicP. tomentosatrees under P-deficient conditions and provide evidence for the potential application of OsPSTOL1in woody plants to overcome soil P deficiency.© 2021 Friends Science Publishers

2016 ◽  
Vol 53 (1) ◽  
pp. 1-11 ◽  
Author(s):  
FERNANDO C. BACHIEGA ZAMBROSI ◽  
RAFAEL VASCONCELOS RIBEIRO ◽  
EDUARDO CARUSO MACHADO ◽  
JÚLIO CÉSAR GARCIA

SUMMARYThe shoot regrowth vigour of sugarcane varieties having contrasting phosphorus (P) efficiency was evaluated under varying soil P availability. The P-inefficient (IAC91–1099 and IACSP94–2101) and -efficient (IACSP94–2094 and IACSP95–5000) sugarcane varieties were grown under low (25 mg P kg−1 soil) or high (400 mg P kg−1 soil) P supply at planting. After 90 days (first cycle of growth), the shoots were harvested and regrowth was studied 70–75 days later by evaluating photosynthesis, leaf area formation, biomass production and P uptake. The shoot dry matter (DM) of sugarcane regrowth subjected to a low P supply was genotype-dependent, with the P-efficient varieties exhibiting greater values than the inefficient ones. This result was explained by the greater efficiency of IACSP94–2094 and IACSP95–5000 in acquiring P rather than P utilization efficiency for shoot biomass production. The root P stored during the first cycle of growth would represent only a minor fraction (< 20%) of the total P content in the shoots at the end of the regrowth period. Thus, we argue that the improved shoot P uptake of the P-efficient varieties was related to their ability to sustain P acquisition after harvesting rather than to the remobilization of root P reserves. Moreover, our data revealed that net CO2 assimilation per leaf area was not associated with differential performance among varieties under P deficiency, suggesting a more critical role of total leaf area in photosynthate supply for sugarcane regrowth. In conclusion, sugarcane regrowth is improved in P-efficient varieties under P deficiency conditions, a finding of practical relevance as such ability might benefit the productivity and the longevity of sugarcane ratoons in low P tropical soils.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 611
Author(s):  
Abdessamad Fakhech ◽  
Martin Jemo ◽  
Najat Manaut ◽  
Lahcen Ouahmane ◽  
Mohamed Hafidi

The impact of salt stress on the growth and phosphorus utilization efficiency (PUE) of two leguminous species: Retama monosperma and Acacia gummifera was studied. The effectiveness of arbuscular mycorrhizal fungi (AMF) to mitigate salt stress was furthermore assessed. Growth, N and P tissue concentrations, mycorrhizal root colonization frequency and intensity, and P utilization efficiency (PUE) in the absence or presence of AMF were evaluated under no salt (0 mM L−1) and three salt (NaCl) concentrations of (25, 50 and 100 mM L−1) using a natural sterilized soil. A significant difference in mycorrhizal colonization intensity, root-to-shoot ratio, P uptake, PUE, and N uptake was observed between the legume species. Salt stress inhibited the shoot and root growth, and reduced P and N uptake by the legume species. Mycorrhizal inoculation aided to mitigate the effects of salt stress with an average increase of shoot and root growth responses by 35% and 32% in the inoculated than in the non-inoculated A. gummifera treatments. The average shoot and root growth responses were 37% and 45% higher in the inoculated compared to the non-inoculated treatments of R. monosperma. Average mycorrhizal shoot and root P uptake responses were 66% and 68% under A. gummifera, and 40% and 95% under R. monosperma, respectively. Mycorrhizal inoculated treatments consistently maintained lower PUE in the roots. The results provide insights for further investigations on the AMF conferred mechanisms to salt stress tolerance response by A. gummifera and R. monosperma, to enable the development of effective technologies for sustainable afforestation and reforestation programs in the Atlantic coast of Morocco.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1401
Author(s):  
Venkata Ravi Prakash Reddy ◽  
Shouvik Das ◽  
Harsh Kumar Dikshit ◽  
Gyan Prakash Mishra ◽  
Muraleedhar S. Aski ◽  
...  

Mungbean (Vignaradiata L. Wilczek) is an early maturing legume grown predominantly in Asia for its protein-rich seeds. P deficiency can lead to several physiological disorders which ultimately result in a low grain yield in mungbean. The genetic dissection of PUpE (Puptake efficiency) and PUtE (P utilization efficiency) traits are essential for breeding mungbean varieties with a high P uptake and utilization efficiency. The study involves an association mapping panel consisting of 120 mungbean genotypes which were phenotyped for total dry weight, P concentration, total P uptake, and P utilization efficiency under low P (LP) and normal P (NP) conditions in a hydroponic system. A genotyping-by-sequencing (GBS) based genome-wide association study (GWAS) approach was employed to dissect the complexity of PUpE and PUtE traits at the genetic level in mungbean. This has identified 116 SNPs in 61 protein-coding genes and of these, 16 have been found to enhance phosphorous uptake and utilization efficiency in mungbeans. We identified six genes with a high expression (VRADI01G04370, VRADI05G20860, VRADI06G12490, VRADI08G20910, VRADI08G00070 and VRADI09G09030) in root, shoot apical meristem and leaf, indicating their role in the regulation of P uptake and utilization efficiency in mungbean. The SNPs present in three genes have also been validated using a Sanger sequencing approach.


1997 ◽  
Vol 24 (1) ◽  
pp. 1-6 ◽  
Author(s):  
K. R. Krishna

Abstract Cultivars of a crop can differ genetically with respect to their uptake, translocation, accumulation, and use of phosphorus. The objective of this paper was to evaluate genetic variation for P uptake and utilization among peanut (Arachis hypogaea L.) genotypes. Several traits contribute to the total P efficiency of the genotype, including root length, rate of P uptake per unit root length, leaf and pod characters such as P accumulation, and dry matter/yield produced per unit P absorbed [i.e., P efficiency ratio (PER)]. Peanut genotypes with increased P uptake and higher PER were identified. Some genotypes sustained higher PER at both low and high soil P availabilities.


Author(s):  
Zhiyang Lie ◽  
Wenjuan Huang ◽  
kadowaki Kohmei ◽  
Guoyi Zhou ◽  
Junhua Yan ◽  
...  

Phosphorus (P) is often one of the most limiting nutrients in highly weathered soils of humid tropical forests, which may regulate the responses of carbon (C) feedback to climate warming. Based on a 7-year continuous field warming experiment conducted by translocating microcosm forest ecosystems from a high-elevation site to low-elevation sites, we detected changes in the ecosystem P cycle in response to warming. We report that warming drives sustained plant P demand by increasing P uptake and thus decreasing foliar N:P. This increased plant P content is supplied by multiple processes including enhanced plant P resorption, soil P mineralization and dissolution without changing litter P mineralization and leachate P. These findings suggest that warming may alleviate initial P deficiency and/or limitation of plant growth and contribute to sustaining plant C fixation in these tropical forests.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1919
Author(s):  
Terry J. Rose ◽  
Carolyn A. Raymond

A key driver of the current unsustainable global phosphorus (P) cycle is the removal of P from fields in harvested grains. Minimising the concentration of P in grains of staple cereal crops would contribute towards addressing the issue, but it is possible that reducing grain P concentration may impact the vigour of subsequent seedlings. We used a hydroponic method to obtain low- and high-P rice (Oryza sativa L.) seeds from plants grown under near-identical conditions, so that any differences in subsequent seedling growth were likely due to differences in seed P concentrations rather than other seed quality differences that may arise from growing mother plants under different conditions. Seedling biomass production and P uptake were then investigated using high- and low-P seed of four rice genotypes in a P-rich soil and a P-deficient soil in a pot study in a glasshouse. In the P-rich soil, with a history of P fertilisation, with P fertiliser banded below seeds at sowing at 20 kg P ha−1 on a pot surface area basis, seedling biomass and P uptake were significantly affected by genotype (p < 0.05) but not by seed P concentration. In the P-deficient Ferralsol, main effects of seed P concentration, genotype and P fertiliser treatment (nil P, banded P fertiliser, broadcast and incorporated P fertiliser) on seedling biomass were all significant (p < 0.01) with, a significant genotype × P fertiliser treatment interaction. Overall, low-P seed produced less biomass than high-P seed (0.059 vs. 0.067 g plant−1) and nil P fertiliser (0.057 g plant−1) resulted in less biomass than banded P fertiliser and broadcast P fertiliser (0.064 and 0.068 g plant−1, respectively). When two genotypes were re-grown in the P-deficient Ferralsol with P fertiliser banded under the seed at 20 kg P ha−1 there was a significant effect of genotype on shoot biomass (p < 0.001) but only a trend towards lower seedling biomass with low P seed compared to high P seed (p = 0.128). Overall, the results suggest that seed P concentration does not affect seedling vigour when external soil P fertility is sufficiently high, but in P-deficient soils seedling biomass production and P uptake can be reduced by 10–20%. Further research is required to determine whether agronomic interventions including seed P priming or biological seed dressings can mitigate any impacts of lower seed P concentration on seedling vigour in P-deficient soils.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
An Yong Hu ◽  
Shu Nan Xu ◽  
Dong Ni Qin ◽  
Wen Li ◽  
Xue Qiang Zhao

The soil bioavailability of phosphorus (P) is often low because of its poor solubility, strong sorption and slow diffusion in most soils; however, stress due to excess soil P can occur in greenhouse production systems subjected to high levels of P fertilizer. Silicon (Si) is a beneficial element that can alleviate multiple biotic and abiotic stresses. Although numerous studies have investigated the effects of Si on P nutrition, a comprehensive review has not been published. Accordingly, here we review: (1) the Si uptake, transport and accumulation in various plant species; (2) the roles of phosphate transporters in P acquisition, mobilization, re-utilization and homeostasis; (3) the beneficial role of Si in improving P nutrition under P deficiency; and (4) the regulatory function of Si in decreasing P uptake under excess P. The results of the reviewed studies suggest the important role of Si in mediating P imbalance in plants. We also present a schematic model to explain underlying mechanisms responsible for the beneficial impact of Si on plant adaption to P-imbalance stress. Finally, we highlight the importance of future investigations aimed at revealing the role of Si in regulating P imbalance in plants, both at deeper molecular and broader field levels.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2711
Author(s):  
Vinita Ramtekey ◽  
Ruchi Bansal ◽  
Muraleedhar S. Aski ◽  
Deepali Kothari ◽  
Akanksha Singh ◽  
...  

Phosphorus (P) is an essential, non-renewable resource critical for crop productivity across the world. P is immobile in nature and, therefore, the identification of novel genotypes with efficient P uptake and utilization under a low P environment is extremely important. This study was designed to characterize eighty genotypes of different Lens species for shoot and root traits at two contrasting levels of P. A significant reduction in primary root length (PRL), total surface area (TSA), total root tips (TRT), root forks (RF), total dry weight (TDW), root dry weight (RDW) and shoot dry weight (SDW) in response to P deficiency was recorded. A principal component analysis revealed that the TDW, SDW and RDW were significantly correlated to P uptake and utilization efficiency in lentils. Based on total dry weight (TDW) under low P, L4727, EC718309, EC714238, PL-97, EC718348, DPL15, PL06 and EC718332 were found promising. The characterization of different Lens species revealed species-specific variations for the studied traits. Cultivated lentils exhibited higher P uptake and utilization efficiency as compared to the wild forms. The study, based on four different techniques, identified EC714238 as the most P use-efficient genotype. The genotypes identified in this study can be utilized for developing mapping populations and deciphering the genetics for breeding lentil varieties suited for low P environments.


2021 ◽  
Author(s):  
Ran Erel ◽  
Sudeep Tiwari ◽  
Ilana Shtein ◽  
Avner Gross

&lt;p&gt;Phosphorus (P) limitation is prevalent around the world,&lt;sup&gt;&lt;/sup&gt;primarily because most soil P have low bioavailability. In P poor ecosystems, deposition of P-rich desert dust is recognized as a major component of the P cycle. The acknowledged paradigm is that plants acquire P deposited in soil primarily via their roots. We tested whether, and to what extent, plants acquire P directly from dust deposited on their leaves and what are the underlining uptake mechanisms of insoluble P. P-rich dust was applied to P sufficient and P deficient chickpea, maize and wheat plants and was compared to plants which received inert silica powder. Foliar application of dust doubled the growth of P stressed chickpea and wheat, two crops originating near the Syrian Desert. P deficiency enhanced the acquisition of insoluble P through series of leaf modifications that increased foliar dust capture, acidified the leaf surface and, in chickpea, enhanced exudation of P-solubilizing organic acids. In in-situ trials, we demonstrated that the modifications of leaf pH and exudation of oxalic and malic acids substantially promoted P solubilisation from dust.&amp;#160; Foliar responses did not occur in maize and in P sufficient plants which displayed only a marginal response to dust. Our results demonstrate that foliar uptake of P from dust can be an alternative P acquisition pathway in P-deficient plants. Interestingly, the abovementioned foliar responses are comparable to known P uptake root responses. Given that P limitation is almost universal, foliar P uptake pathway will have significant ecological and agricultural implications.&lt;/p&gt;


Author(s):  
Benjamin Hill ◽  
Jakob Santner ◽  
Heide Spiegel ◽  
Markus Puschenreiter ◽  
Walter W. Wenzel

AbstractSoil P testing has been widely used to predict crop yields, P uptake, and fertilizer demands in agriculture. Diffusive gradients in thin films (DGT) provides a zero-sink soil P test which mimics diffusion-controlled plant uptake and has previously been found to predict P availability to crops better than conventional quantity-based P tests in highly weathered Australian, though not in European soils. Here we tested the performance of DGT and the Austrian and German standard P quantity test calcium acetate lactate (CAL) to explain the variation of crop yield and P uptake response of winter wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.) in long-term P fertilization experiments at four different sites in eastern Austria. Phosphorus extracted with DGT (P-DGT) and CAL (P-CAL) correlated well in similar soils but not across sites with large variation in soil and site properties such as carbonate equivalent and water availability. The predictive power of DGT for barley (R2 = 0.42) and wheat grain yield (R2 = 0.32), and P uptake in wheat grains (R2 = 0.36) was clearly superior to that of the CAL, and less dependent on soil properties. The better performance of DGT compared to the quantity test is consistent with diffusion-limited P uptake in the water-limited cultivated soils of eastern Austria. The critical values of P deficiency derived from the Mitscherlich-type fits for barley and wheat at 80% relative yield are 64.9 and 26.2 µg L−1, respectively, consistent with differential P demands of the crops.


Sign in / Sign up

Export Citation Format

Share Document