scholarly journals Genetic Variation for Traits Related to Phosphorus Use Efficiency in Lens Species at the Seedling Stage

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2711
Author(s):  
Vinita Ramtekey ◽  
Ruchi Bansal ◽  
Muraleedhar S. Aski ◽  
Deepali Kothari ◽  
Akanksha Singh ◽  
...  

Phosphorus (P) is an essential, non-renewable resource critical for crop productivity across the world. P is immobile in nature and, therefore, the identification of novel genotypes with efficient P uptake and utilization under a low P environment is extremely important. This study was designed to characterize eighty genotypes of different Lens species for shoot and root traits at two contrasting levels of P. A significant reduction in primary root length (PRL), total surface area (TSA), total root tips (TRT), root forks (RF), total dry weight (TDW), root dry weight (RDW) and shoot dry weight (SDW) in response to P deficiency was recorded. A principal component analysis revealed that the TDW, SDW and RDW were significantly correlated to P uptake and utilization efficiency in lentils. Based on total dry weight (TDW) under low P, L4727, EC718309, EC714238, PL-97, EC718348, DPL15, PL06 and EC718332 were found promising. The characterization of different Lens species revealed species-specific variations for the studied traits. Cultivated lentils exhibited higher P uptake and utilization efficiency as compared to the wild forms. The study, based on four different techniques, identified EC714238 as the most P use-efficient genotype. The genotypes identified in this study can be utilized for developing mapping populations and deciphering the genetics for breeding lentil varieties suited for low P environments.

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1401
Author(s):  
Venkata Ravi Prakash Reddy ◽  
Shouvik Das ◽  
Harsh Kumar Dikshit ◽  
Gyan Prakash Mishra ◽  
Muraleedhar S. Aski ◽  
...  

Mungbean (Vignaradiata L. Wilczek) is an early maturing legume grown predominantly in Asia for its protein-rich seeds. P deficiency can lead to several physiological disorders which ultimately result in a low grain yield in mungbean. The genetic dissection of PUpE (Puptake efficiency) and PUtE (P utilization efficiency) traits are essential for breeding mungbean varieties with a high P uptake and utilization efficiency. The study involves an association mapping panel consisting of 120 mungbean genotypes which were phenotyped for total dry weight, P concentration, total P uptake, and P utilization efficiency under low P (LP) and normal P (NP) conditions in a hydroponic system. A genotyping-by-sequencing (GBS) based genome-wide association study (GWAS) approach was employed to dissect the complexity of PUpE and PUtE traits at the genetic level in mungbean. This has identified 116 SNPs in 61 protein-coding genes and of these, 16 have been found to enhance phosphorous uptake and utilization efficiency in mungbeans. We identified six genes with a high expression (VRADI01G04370, VRADI05G20860, VRADI06G12490, VRADI08G20910, VRADI08G00070 and VRADI09G09030) in root, shoot apical meristem and leaf, indicating their role in the regulation of P uptake and utilization efficiency in mungbean. The SNPs present in three genes have also been validated using a Sanger sequencing approach.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1722
Author(s):  
Lidiya Vysotskaya ◽  
Guzel Akhiyarova ◽  
Arina Feoktistova ◽  
Zarina Akhtyamova ◽  
Alla Korobova ◽  
...  

Although changes in root architecture in response to the environment can optimize mineral and water nutrient uptake, mechanisms regulating these changes are not well-understood. We investigated whether P deprivation effects on root development are mediated by abscisic acid (ABA) and its interactions with other hormones. The ABA-deficient barley mutant Az34 and its wild-type (WT) were grown in P-deprived and P-replete conditions, and hormones were measured in whole roots and root tips. Although P deprivation decreased growth in shoot mass similarly in both genotypes, only the WT increased primary root length and number of lateral roots. The effect was accompanied by ABA accumulation in root tips, a response not seen in Az34. Increased ABA in P-deprived WT was accompanied by decreased concentrations of cytokinin, an inhibitor of root extension. Furthermore, P-deficiency in the WT increased auxin concentration in whole root systems in association with increased root branching. In the ABA-deficient mutant, P-starvation failed to stimulate root elongation or promote branching, and there was no decline in cytokinin and no increase in auxin. The results demonstrate ABA’s ability to mediate in root growth responses to P starvation in barley, an effect linked to its effects on cytokinin and auxin concentrations.


2012 ◽  
Vol 58 (No. 5) ◽  
pp. 230-235 ◽  
Author(s):  
Manoj-Kumar ◽  
A. Swarup ◽  
A.K. Patra ◽  
J.U. Chandrakala ◽  
K.M. Manjaiah

In a phytotron experiment, wheat was grown under two levels of atmospheric CO<sub>2</sub> [ambient (385 ppm) vs. elevated (650 ppm)], two levels of temperature (ambient vs. ambient +3&deg;C) superimposed with three levels of phosphorus (P) fertilization: 0, 100, and 200% of recommended dose. Various measures of P acquisition and utilization efficiency were estimated at crop maturity. In general, dry matter yields of all plant parts increased under elevated CO<sub>2</sub> (EC) and decreased under elevated temperature (ET); however, under concurrently elevated CO<sub>2</sub> and temperature (ECT), root (+36%) and leaf (+14.7%) dry weight increased while stem (&ndash;12.3%) and grain yield (&ndash;17.3%) decreased, leading to a non-significant effect on total biomass yield. Similarly, total P uptake increased under EC and decreased under ET, with an overall increase of 17.4% under ECT, signifying higher P requirements by plants grown thereunder. Although recovery efficiency of applied P fertilizer increased by 27%, any possible benefit of this increase was negated by the reduced physiological P efficiency (PPE) and P utilization efficiency (PUtE) under ECT. Overall, there was ~17% decline in P use efficiency (PUE) (i.e. grain yield/applied P) of wheat under ECT. &nbsp;


Soil Research ◽  
1997 ◽  
Vol 35 (2) ◽  
pp. 313 ◽  
Author(s):  
D. S. Mendham ◽  
P. J. Smethurst ◽  
P. W. Moody ◽  
R. L. Aitken

An understanding of the processes controlling soil nutrient supply and plant uptake has led to process-based models that can predict nutrient uptake and the concentration gradient that develops at the root surface. By using this information, it may be possible to develop an indicator of soil phosphorus status based on the predicted uptake and/or concentration of phosphorus (P) at the root surface. To identify the potential for such a test, the relationships between model output and observed plant growth were examined using data from a published experiment. The experiment was initially designed to investigate the relationship between common indices of soil-available P and the growth of maize (Zea mays) in 26 surface soils from Queensland. There was a high correlation between observed and predicted P uptake, and between relative dry matter yield and predicted P uptake. The predicted concentration of P at the root surface was also highly correlated with P uptake and dry weight increase. It is hypothesised that the short growth period (25 days) was responsible for the high correlation between P uptake and measured soil solution P. The hypothesis that a predicted concentration of P at the root surface or predicted P uptake may be valuable indicators of P deficiency in the longer term still remains to be tested.


2008 ◽  
Vol 133 (4) ◽  
pp. 515-520 ◽  
Author(s):  
Matthew D. Taylor ◽  
Paul V. Nelson ◽  
Jonathan M. Frantz

Sudden pH decline (SPD) describes the situation where crops growing at an appropriate pH rapidly (within 1–2 weeks) cause the substrate pH to shift downward one to two units. ‘Designer Dark Red’ geraniums (Pelargonium ×hortorum Bailey) were grown in three experiments to assess possible effects of light on SPD and phosphorous (P) uptake. The first experiment tested the effect of four light intensities (105, 210, 575, and 1020 ± 25 μmol·m−2·s−1) on substrate acidification. At 63 days, substrate pH declined from 6.0 to 4.8 as light intensity increased. Tissue P of plants grown at the highest two light levels was extremely low (0.10%–0.14% of dry weight). P stress has been reported to cause acidification. Because plants in the two lowest light treatments had adequate P, it was not possible to determine if the drop in substrate pH was a direct light effect or a combination of light and P. The second experiment used a factorial combination of the three highest light levels from Expt. 1 and five preplant P rates (0, 0.065, 0.13, 0.26, or 0.52 g·L−1 substrate) to assess this question. When tissue P concentrations were deficient, pH decreased by 0.6 to 1.0 pH units within 2 weeks and deficiency occurred more often with high light intensity. These data indicated that P deficiency caused substrate acidification and indicated the possibility that P uptake was suppressed by high light intensity. The third experiment was conducted in hydroponics to determine the direct effect of high light intensity on P uptake. In this experiment, cumulative P uptake per gram root and the rate of P uptake per gram root per day both decreased 20% when light intensity increased from 500 to 1100 μmol·m−2·s−1. It is clear from this study that P deficiency causes geraniums to acidify the substrate and that high light suppresses P uptake.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mahreen Yahya ◽  
Ejaz ul Islam ◽  
Maria Rasul ◽  
Iqra Farooq ◽  
Naima Mahreen ◽  
...  

Phosphorous (P) deficiency is a major challenge faced by global agriculture. Phosphate-solubilizing bacteria (PSB) provide a sustainable approach to supply available phosphates to plants with improved crop productivity through synergistic interaction with plant roots. The present study demonstrates an insight into this synergistic P-solubilizing mechanism of PSB isolated from rhizosphere soils of major wheat-growing agro-ecological zones of Pakistan. Seven isolates were the efficient P solubilizers based on in vitro P-solubilizing activity (233-365 μg ml–1) with a concomitant decrease in pH (up to 3.5) by the production of organic acids, predominantly acetic acid (∼182 μg ml–1) and gluconic acid (∼117 μg ml–1). Amplification and phylogenetic analysis of gcd, pqqE, and phy genes of Enterobacter sp. ZW32, Ochrobactrum sp. SSR, and Pantoea sp. S1 showed the potential of these PSB to release orthophosphate from recalcitrant forms of phosphorus. Principal component analysis indicates the inoculation response of PSB consortia on the differential composition of root exudation (amino acids, sugars, and organic acids) with subsequently modified root architecture of three wheat varieties grown hydroponically. Rhizoscanning showed a significant increase in root parameters, i.e., root tips, diameter, and surface area of PSB-inoculated plants as compared to uninoculated controls. Efficiency of PSB consortia was validated by significant increase in plant P and oxidative stress management under P-deficient conditions. Reactive oxygen species (ROS)-induced oxidative damages mainly indicated by elevated levels of malondialdehyde (MDA) and H2O2 contents were significantly reduced in inoculated plants by the production of antioxidant enzymes, i.e., superoxide dismutase, catalase, and peroxidase. Furthermore, the inoculation response of these PSB on respective wheat varieties grown in native soils under greenhouse conditions was positively correlated with improved plant growth and soil P contents. Additionally, grain yield (8%) and seed P (14%) were significantly increased in inoculated wheat plants with 20% reduced application of diammonium phosphate (DAP) fertilizer under net house conditions. Thus, PSB capable of such synergistic strategies can confer P biofortification in wheat by modulating root morphophysiology and root exudation and can alleviate oxidative stress under P deficit conditions.


2020 ◽  
Vol 50 (3) ◽  
Author(s):  
Lanlan Chen ◽  
Zaibiao Zhu ◽  
Qiaosheng Guo ◽  
Jun Guo ◽  
Zhigang Huang ◽  
...  

ABSTRACT: Monochasma savatieri Franch. ex Maxim is a perennial, parasitic herb used in traditional Chinese medicine and its wild resources have decreased sharply in recent years due to destructively harvesting and habitat destruction. Haustorium formation is a key event of parasites, but the concentrations of haustorium-inducing factors vary with species and cultivation conditions. In this study, we investigated the effects of the 2,6-dimethoxy-p-benzoquinone (DMBQ) concentration and cultivation density on the growth traits, haustorium formation and biomass of M. savatieri in the absence of a host plant. The results showed that both the DMBQ concentration and cultivation density regulated growth traits, haustorium formation and biomass in M. savatieri. The number of haustoria was significantly positively correlated with seedling height, maximum root length, the number of root tips and total dry weight. Membership function analysis revealed an overall greater increase in growth traits, haustorium formation and biomass when M. savatieri was treated with 10 μmol·L-1DMBQ and grew solitarily. These results offer an understanding of growth in M. savatieri influenced by the DMBQ concentration and cultivation density, which may aid in the establishment of a comprehensive cultivation system for M. savatieri or similar plants.


2016 ◽  
Vol 4 (2) ◽  
pp. 207-212
Author(s):  
M.K. Hasan ◽  
K.M. Nasiruddin ◽  
M. Al-Amin ◽  
A.K.M.S. Hossain

Salinity is one of the most limiting factors for successful crop production in in arid and semi-arid regions of the world. Thirty eight soybean genotypes were screened at 8mMNaCl under in vitro condition. Salinity reduced Shoot dry weight, Root dry weight and Plant height. Salt susceptibility index was fully and positive correlated with percent reduction of total dry weight. Principal component analysis showed that the first two components were extracted that comprises of about 98.6% of the total variation in the genotypes. Based on the K-means clustering, 8, 6, 12 and 12 genotypes were categorized under cluster II, IV, III and I and considered as tolerant, moderately tolerant, moderately susceptible and susceptible which represents the 21, 16, 31.5 and 31.5%, respectively. Genotypes Shohag, AGS 313, PK 416, AGS 66, MACS 57, AGS 195, GC 308, AGS 129 were found relatively tolerant to salinity.Int J Appl Sci Biotechnol, Vol 4(2): 207-212


2008 ◽  
Vol 53 (No. 3) ◽  
pp. 113-119 ◽  
Author(s):  
A.Z. Ren ◽  
Y.B. Gao ◽  
F. Zhou

It has been demonstrated that endophyte-infected (EI) ryegrass performed better in response to N deficiency than its endophyte-free (EF) counterpart. When P is considered, there is a lack of related information. In this study, <i>Lolium perenne</i> L. infected with <i>Neotyphodium lolii</i> was employed to establish EI and EF populations. Soil-grown EI and EF ryegrass were tested for their responses to P deficiency. The results showed that the endophyte infection improved the adaptability of ryegrass to P deficiency. When P was limited, EI roots were significantly longer (EI, 398.8; EF, 323.4 m/pot) and heavier (EI, 30.58; EF, 23.20 g/pot) than EF roots; the root: shoot ratio of EI plants was greater than that of EF plants (<i>P</i> < 0.05). The content of total phenolics and organic acids was significantly greater for EI roots than for EF roots at low P supply; the concentration of both, however, was not improved by the endophyte infection. This suggested that it was the higher root dry weight (DW) that contributed to the higher content of total phenolics and organic acids for EI plants, and the endophyte infection might have negligible effects on chemical modification of perennial ryegrass. Endophyte infection did not increase P uptake rate but did significantly improve P use efficiency of ryegrass in response to P deficiency (EI, 0.734; EF, 0.622 g DW/mg P).


1961 ◽  
Vol 39 (5) ◽  
pp. 1247-1254 ◽  
Author(s):  
M. M. Giertych ◽  
J. L. Farrar

Nine seed lots of Pinus banksiana Lamb. and one of P. contorta var. latifolia Engelm. were grown for 115 days on five nitrogen levels and two photoperiods. The nitrogen levels were: zero N—no nitrogen, [Formula: see text], [Formula: see text], 1N—203 p.p.m., and 2N—406 p.p.m. The two photoperiods were a long-night photoperiod (10-hour day) and a broken-night photoperiod (9.5-hour day followed by 0.5-hour light break in the middle of the dark period). The plants, five per vessel, were analyzed for their response to treatments in terms of growth, development, and nitrogen content.(1) The breaking of the night doubled the height, total dry weight, and leaf weight and increased root weight and nitrogen absorption, but it lowered the number of fresh, active root tips, the proportion of the plant in root tissue, and the nitrogen concentration, inhibited production of secondary leaves, and delayed winter bud formation.(2) The increase in nitrogen level in the medium lowered the percentage of fresh, active root tips, the proportion of the plant in root tissue, and the production of winter buds; it increased the content and concentration of nitrogen in the plants. Up to a certain maximum (about [Formula: see text]), it increased the dry weight and height of the plants.(3) The interrelation of growth and developmental stimuli is discussed. It is suggested that growth is an important factor in controlling development.


Sign in / Sign up

Export Citation Format

Share Document