scholarly journals EFFECT OF DOLOMITE AND CHICKEN MANURE APPLICATION ON PAK CHOI (Brassica rapa chinensis) PRODUCTION AND CARBON DIOXIDE EMISSIONS IN TROPICAL PEATLANDS

2021 ◽  
Vol 9 (6) ◽  
pp. 770-780
Author(s):  
Salampak ◽  
Adi Jaya ◽  
Paska Aprianto ◽  
Susi Kresnatita

The current study was aimed to determine the effect of ameliorant on Pak choi (Brassica rapa chinensis) productivity, CO2 emissions, and factors affecting the rate of CO2 emission. The study was carried out using a non-factorial completely randomized design with seven treatments. The imposed treatment are without ameliorant (control), 10, 20, 30 ton ha-1 chicken manure, 4 ton ha-1 Dolomite + Chicken Manure @ 10 ton ha-1, Dolomite 4 ton ha-1 + Chicken Manure @ 20 ton ha-1 and Dolomite 4 ton ha-1 + Chicken Manure @ 30 ton ha-1. The variables observed are the chemical properties of peat soil, fresh and dry weight of pak choi, CO2 emissions, and factors that affect CO2 emissions. The results of the study revealed that the combination of Dolomite and chicken manure has a significant effect on the studied parameters and the combination of 4 ton ha-1 dolomite + 30 ton ha-1 chicken manure had the highest pH change (average of 6.36), highest productivity, and CO2 emission (344.42 mg cm-2hr-1). Results of the study can be concluded that Dolomite and chicken manure has a significant effect on the various growth parameters of B. rapa chinensis and the properties of the peat soil.

2020 ◽  
Vol 21 (8) ◽  
Author(s):  
Dwi Astiani ◽  
TRI WIDIASTUTI ◽  
SITI LATIFAH ◽  
DARBIN SIMATUPANG

Abstract. Astiani D, Widiastuti T, Latifah S, Simatupang D. 2020. Soil characteristics and CO2 emissions of ex-burnt peatland in Kubu Raya District, West Kalimantan, Indonesia. Biodiversitas 21: 3691-3698. West Kalimantan, Indonesia has a large extent of tropical peatland with total ​​1.74 million ha with only 44.5% of such areas remaining as peat forest, while the rests have been converted into plantations, agricultural lands, and shrubs. The conversion of peat forest often uses fires to clear the vegetation and is followed by building canal to drain the water. The lack of vegetation combined with drought soil trigger uncontrolled escaped fire, especially in the dry season or El-Nino events, which is likely to affect soil characteristics and emit carbon dioxide. The purpose of this study is to examine the changes in soil characteristics both physical and chemical properties and to investigate CO2 emissions from peat soil post-fire. As a comparison, similar parameters were also assessed in non-burnt sites. The results showed significant differences in some peat soil characters both physically and chemically between ex-burnt and non-burnt peatland. The ex-burnt site had higher pH, available phosphorus and C/N ratio than those in the non-burnt site. Conversely, the total nitrogen and carbon contents, and cation exchange capacity were lower which is likely due to leaching. Peat fires also impacted physical characteristics of the soil such as increasing soil bulk density, reducing soil water content, soil temperature, especially in wet conditions. Carbon dioxide emissions in the ex-burnt site were considered higher than non-burnt site. These results could be brought out as a part of baseline data in managing ex-burnt peatlands to maintain a balance between carbon output and input and efforts on preventing peatland fires from becoming continuous carbon sources.


2017 ◽  
Vol 22 (2) ◽  
pp. 77-85
Author(s):  
Indri Hapsari Fitriyani ◽  
Syaiful Anwar ◽  
Arief Hartono ◽  
Diah Tjahyandari

Pesticides are widely used in agriculture, including on peat soil. The objective of this study was to analyze the effect of the application of paraquat, difenoconazole, and butylphenyl methylcarbamate (BPMC) on CO2 emissions and concentrations of phenolic acids in a peat soil. Peat soil sample was taken in District of Pulang Pisau, Central Kalimantan. The peat soil was applied with 1.89 mg kg-1 paraquat, 1.72 mg kg-1 difenoconazole and 1.65 mg kg-1 butylphenyl methylcarbamate (BPMC), then the soil was incubated for 1, 2, 4 , 5, 7, 10, 14, 21, 26 and 30 days. The results showed that the application of pesticides on peat soil increased CO2emission, and decreased CH4 emission and phenolic acid concentrations up to 30 days of incubation. The CO2 emmisions were derived from C of degraded pesticides and from C of phenolic acids, although the oxidation reaction was not accompanied by the change of soil pH. Keyword: CO2 emission, phenolic acids, butylphenyl methylcarbamate (BPMC), difenoconazole, paraquat, peat soil


2011 ◽  
Vol 8 (4) ◽  
pp. 8269-8302 ◽  
Author(s):  
J. Jauhiainen ◽  
A. Hooijer ◽  
S. E. Page

Abstract. Peat surface CO2 emission, groundwater table depth and peat temperature were monitored for two years along transects in an Acacia plantation on thick tropical peat (>4 m) in Sumatra, Indonesia. A total of 2300 emission measurements were taken at 144 locations. The autotrophic root respiration component of the CO2 emission was separated from heterotrophic emissions caused by peat oxidation in three ways: (i) by comparing CO2 emissions within and beyond the tree rooting zone, (ii) by comparing CO2 emissions with and without peat trenching (i.e. cutting any roots remaining in the peat beyond the tree rooting zone), and (iii) by comparing CO2 emissions before and after Acacia tree harvesting. On average, the contribution of root respiration to daytime CO2 emission is 21 % along transects in mature tree stands. At locations 0.5 m from trees this is up to 80 % of the total emissions, but it is negligible at locations more than 1.3 m away. This means that CO2 emission measurements well away from trees are free of any root respiration contribution and thus represent only peat oxidation emission. We find daytime mean annual CO2 emission from peat oxidation alone of 94 t ha−1 yr−1 at a mean water table depth of 0.8 m, and a minimum emission value of 80 t ha−1 yr−1 after correction for the effect of diurnal temperature fluctuations, which resulted in a 14.5 % reduction of the daytime emission. There is a positive correlation between mean long-term water table depths and peat oxidation CO2 emission. However, no such relation is found for instantaneous emission/water table depth within transects and it is clear that factors other than water table depth also affect peat oxidation and total CO2 emissions. The increase in the temperature of the surface peat due to plantation development may explain over 50 % of peat oxidation emissions.


HortScience ◽  
2012 ◽  
Vol 47 (3) ◽  
pp. 395-402 ◽  
Author(s):  
Archana P. Pant ◽  
Theodore J.K. Radovich ◽  
Nguyen V. Hue ◽  
Susan C. Miyasaka

Previous work has demonstrated the potential of compost tea to enhance plant growth and nutritional status. One factor thought to contribute to variability in the efficacy of compost tea is the amount of compost per unit volume of water. To address these gaps in our understanding, two greenhouse trials and two field trials were conducted to investigate the effects of various extraction ratios on the growth, mineral nitrogen (N), and phytonutrient content of pak choi (Brassica rapa, Chinensis) and on soil biological properties. In greenhouse experiments, plants were fertilized with a single rate of chicken manure-based thermophilic compost. In field trials, three fertilizer treatments: 1) rendered meat byproduct or Tankage (Island Commodities, Honolulu, HI); 2) soluble fertilizer (16:16:16); and 3) chicken manure-based thermophilic compost were applied. Aerated vermicompost teas were prepared using chicken manure-based vermicompost and water at various ratios. Pak choi plants were treated weekly for 4 weeks with 10%, 5%, 3%, and 1% vermicompost teas in the greenhouse experiments and 10% and 5% teas in the field trials. Applications of vermicompost tea significantly increased plant growth, N content, total carotenoids, and total glucosinolates in plant tissue; this response was greatest in chicken manure-fertilized treatments. Increases in yield and phytonutrient content were associated with increased N uptake. Vermicompost tea also increased soil respiration and dehydrogenase activity over the control (water). Plant growth, phytonutrient content, and microbial activities in soil increased with increasing concentrations of vermicompost tea. Within the range of concentrations evaluated (1%–10%), greatest plant growth response was observed with 5% and 10% vermicompost tea, indicating that the optimal water-to-vermicompost ratio for extraction is lower than 50:1 and is likely in the range of 10:1 to 20:1. The findings suggest that vermicompost tea could be used to improve plant nutrient status and enhance soil biological properties in vegetable production.


2021 ◽  
Vol 13 (10) ◽  
pp. 1914
Author(s):  
Tomohiro Shiraishi ◽  
Ryuichi Hirata ◽  
Takashi Hirano

Recently, the effect of large-scale fires on the global environment has attracted attention. Satellite observation data are used for global estimation of fire CO2 emissions, and available data sources are increasing. Although several CO2 emission inventories have already been released, various remote sensing data were used to create the inventories depend on the studies. We created eight global CO2 emission inventories through fires from 2001 to 2020 by combining input data sources, compared them with previous studies, and evaluated the effect of input sources on CO2 emission estimation. CO2 emissions were estimated using a method that combines the biomass density change (by the repeated fires) with the general burned area approach. The average annual CO2 emissions of the created eight inventories were 8.40 ± 0.70 Pg CO2 year−1 (±1 standard deviation), and the minimum and maximum emissions were 3.60 ± 0.67 and 14.5 ± 0.83 Pg CO2 year−1, respectively, indicating high uncertainty. CO2 Emissions obtained from four previous inventories were within ±1 standard deviation in the eight inventories created in this study. Input datasets, especially biomass density, affected CO2 emission estimation. The global annual CO2 emissions from two biomass maps differed by 60% (Maximum). This study assesses the performance of climate and fire models by revealing the uncertainty of fire emission estimation from the input sources.


2019 ◽  
pp. 252-268 ◽  
Author(s):  
H. Dkhili ◽  
L. B. Dhiab

This paper summarizes the arguments and counterarguments within the scientific discussion on the issue the Management of Environmental Performance and the Carbon Dioxide Emissions (CO2) on the Economic Growth, with an innovative study in the context of the GCC countries. The main goal of the paper is to examine empirically the environmental Kuznets curve hypothesis for the GCC countries. The methodological tool of this contribution tries to measure the effect of the emission of the CO2 on the Growth Economic and environmental performance. The main purpose of the research is focused on the empirical approach justified by the use of a dynamic panel modeling on a sample of the GCC countries during the period of 2002-2018. Systematization literary sources and approaches for solving the problem of the reaction of the development of the Environmental Performance with the level of the the Carbon Dioxide Emissions (CO2) and the economic growth. The study employed a GMM model system. Subsequently, the authors displayed a Panel Co-integration test of Pedroni (2004), the Kao Residual Co-integration test (1999), and the Granger causality tests. The results found unidirectional causal relationships between economic growth and the entire variable of the sample, except the variable CO2 emission. These relationships are statistically significant at the level of 5%. For the relation between Economic Growth and CO2 emission, one the hypothesis of the paper was checking a non-significant and unidirectional relationship. The results showed a long-run unidirectional causality between the variables and implied that Economic Growth in the GCC countries has a positive and significant unidirectional relation with Environment Performance, trade openness, foreign direct investment, and investment. The results confirm the existence of a negative relationship as insignificant, and unidirectional, between economic growth and CO2 emissions in the GCC countries. Finally, this finding doesn’t support the validity of the EKC hypothesis and provide information's to take the necessary policy suggestions to maintain the environmental performance and limit the average of the CO2 emissions. The results of the research can be useful for the GCC countries to avoid the higher level of Carbon Dioxide Emissions (CO2) and maintain a good Environmental Performance. Keywords: environmental performance, Environmental Kuznets Curve, CO2 emissions.


Author(s):  
Qing Tong ◽  
Sheng Zhou ◽  
Yuefeng Guo ◽  
Yang Zhang ◽  
Xinyang Wei

China greenhouse gas inventories show that CO2 emissions from the lime industrial process are large scales and closely related to the development of its downstream industries. Therefore, there is high importance to analyze and forecast on reducing China’s CO2 emissions from lime industrial process. The aims of this paper are to make up the research gaps in China and provide a quantitative reference for related authorities to formulate relevant policies. The prediction method in this paper is consistent with the published national inventory, which is an activity data based method to predict carbon dioxide emissions from the industrial process of four categories of lime products. Three future scenarios are assumed. The business as usual scenario (BAU) is a frozen scenario. There are two emission reduction scenarios (ERS and SRS) assumed under different emission reduction strength considering combined industrial process CO2 emission reduction approaches from both the production side and the consumption side. The results show that between 2020 and 2050, China’s lime industrial process has an increasingly significant CO2 emission reduction potential, enabling both emission intensity reductions and total emission reductions to be achieved simultaneously. Based on the simulation results from emission reduction scenarios, compared with 2012 level, in 2050, the emission intensity can be reduced by 13–27%, the total lime production can be reduced by 49–78%, and the CO2 emissions in the lime industrial process can be reduced by 57–85%.


Author(s):  
Adilson Amorim Brandão ◽  
Eduardo Guimarães Couto ◽  
Renato de Aragão Ribeiro Rodrigues ◽  
Oscarlina Lúcia dos Santos Weber ◽  
Osvaldo Borges Pinto Júnior

The application of liquid pig slurry (LPS) to pastures offers potential as a fertilizer but could have a direct influence on soil CO2 emissions. This study evaluated soil carbon dioxide emissions after successive LPS applications to soils under pasture cultivation. The experiment was carried out on ‘Tifton-85’ bermudagrass pasture cultivated in a red-yellow oxisol soil in the municipality of Lucas do Rio Verde-MT, Brazil. Two treatments were evaluated: the control and an application of 20 m3 ha-1 of LPS after each cut of the pasture. The CO2 emissions from the soil were determined using a high-precision infrared gas analyzer. Soil temperature and soil moisture were determined as were micrometeorological variables. The application of LPS had a significant effect on soil C-CO2 flow. The average flow of C-CO2 from the soil for the control treatment and with the application of LPS was 0.236 g C-CO2 m-2 h-1 and 0.291 g C-CO2 m-2 h-1, respectively. The application of LPS increased the accumulated CO2 emissions from the soil by 23.2%. Soil temperature and moisture are the main factors regulating the process of soil CO2 emission. These factors therefore need to be considered when evaluating the impact of LPS application on greenhouse gas emissions


2017 ◽  
Vol 22 (1) ◽  
pp. 1-9
Author(s):  
. Husnain ◽  
Ibrahim Adamy Sipahutar ◽  
Joko Purnomo ◽  
Hery Widyanto ◽  
. Nurhayati

The conversion of peat soils to agricultural uses has been thought to increase CO2 emission due to several factors, including fertilization. However, evidence on the effect of fertilization on CO2emissionsfrompeat soils is rareand often inconsistence. We measured the effects of different types of fertilizer, including N, P and K sources, and clay as an ameliorant on CO2 emission from a bare peat soil in Lubuk Ogong, Riau Province. Nutrients were added in the following combinations: 0 (unfertilized plot), N source (urea), slow-release N (slow release urea), N and Psource (Urea+SP-36), N, P and K sources (urea+SP-36+KCl) and combined NPK-Clay. Fertilization resulted in a decreasein CO2 emissions compared to that prior to fertilization except when slow-release urea was applied. Decreasing of CO2 emissions was probably due to pH-related effects because the pH in the N treatment was lower than in both the control and the unfertilized plot. A decreasein the level of CO2 emissions among the treatments followed the order NPK-Clay>NP>NPK>urea>slow-release urea. Covariance analyses showed that the difference in CO2 emissions prior to treatment was not significant. The application of individual and combined treatments of N, P, K and NPK mixed with 5 Mg ha-1 clay led to significantly reduced CO2 emissions from bare peat soil in Lubuk Ogong, Riau Province. In addition to fertilization, the water table depth was the only parameter that significantly affected the CO2 emissions (P<0.05). We conclude that the application of nutrient combinations, including N, P, K and clay, could reduce CO2 emissions because these treatments maintain a balanced nutritional condition in the soil with respect to the microbial activity.Keywords: Amelioration, CO2 emission, fertilization, tropical peat soils   


2020 ◽  
Vol 1 (2) ◽  
pp. 86
Author(s):  
Mercy Bientri Yunindanova ◽  
Subuh Pramono ◽  
Muhammad Hamka Ibrahim

In this study, we investigated nutrient uptake, partitioning, and production of two subspecies of Brassica in response to nutrient solution concentration in floating hydroponics systems. This study used a complete randomized block design factorial with two factors. The first factor was two Brassica subspecies consisting of Brassica rapa subsp. chinensis (Pak Choi) and Brassica rapa var. parachinensis (Choy Sum). The second factor was the concentration level consisting electrical conductivity (EC) 1 mS cm-1 and EC 2 mS cm-1. The results indicated the absorption rates of nitrogen (N,) phosphorus (P), and potassium (K) in leaves, roots and stems were similar in both nutrient concentrations. In general, all combination treatments resulted more accumulation of P followed by N, also K as the smallest proportion. P was mostly accumulated at the root and leaves (19.60 to 25.90 mg g-1), while majority of N was collected in leaves ranging from 18.00 to 24.30 mg g-1. The highest K content was detected in the stem (10.70 to 14.20 mg g-1). P uptake was 1.69 to 2.47 times higher than K, while N uptake was 1.44 to 2.04 times higher than K. Both two subspecies and concentrations performed no significant effects on nutrient uptake. Although same species, the plant growth parameters of Pak Choi and Choy Sum are very different including plant height, leaves number, width and length. Both two subspecies adapted well with both concentrations. However, significant differences were recorded in the combination of subspecies and nutrient concentration on plant growth and production parameters. To achieve higher market portion, Pak Choi would be more suitable to be planted on EC 1 mS cm-1, while Choy Sum was favorable at both concentrations.


Sign in / Sign up

Export Citation Format

Share Document