scholarly journals The Effects of Different Plant Activators on Protein, Lipid and Fatty Acids in Snack-Seed Pumpkin

2018 ◽  
Vol 72 ◽  
pp. 1-6
Author(s):  
Aygul Dayan ◽  
Nebahat Sari ◽  
Fatih Özogul

In this study, Nusem and Beppo snack seed pumpkin cultivars were used to determine the effects of different plant activators on seed protein, lipid and fatty acids contents. In the context of study, plant activators consist of Crop-set (CR), EM1, ERS, Vitormone-Plus Drip (VIT), Bacillus subtilis (OSU 142), Bacillus megatorium (M3), Azospirillum sp. (SP 245), Spirulina platensis (SIP), Ecocompost (EKO), Camli Botanica liquid organic fertilizer (BOT) and Zincon (ZIN) were used as organic fertilizer. In the experiment, the plant activators were applied to the plants alone or in combination with each other and organic fertilizer. Two separate control groups which were organic and conventional (CONV.) fertilizer have been identified. As a result of the use of different plant activators, the highest protein content was obtained from CONV. application (35.50%), M3+SP 245 (33.09%) and M3 (33.04%); the highest lipid content was observed from SP 245+OG (45.90%), CR (44.48%) and SIP+OG (44.26%) applications. The use of different plant activators effected the fatty acid contents of seeds. Total 11 fatty acids were identified. Among the fatty acids, C16:0 (Palmitic acid), C18:0 (Stearic acid), C18:1 (Oleic acid) and C18:2 (Linoleic acid) were found dominant.

1986 ◽  
Vol 59 (5) ◽  
pp. 800-808 ◽  
Author(s):  
James M. Sloan ◽  
Michael J. Maghochetti ◽  
Walter X. Zukas

Abstract An effort to characterize the reversion process of guayule rubber when naturally-occurring guayule resin components are present has shown that these components act as a reversion-retarding material. The amount of reversion resistance varies as a function of temperature, concentration, and type of fatty acid. Of the three fatty acids used, linoleic acid, stearic acid, and oleic acid, linoleic acid performed the best for reversion resistance, followed by stearic acid, then oleic acid. When the temperature was increased 10°C, an increase of 15% reversion was observed. This held true for the three temperatures studied. In addition, the amount of reversion improvement upon addition was 20% reversion. In the case of curing at 150°C, this resulted in 0% reversion. The 20% resistance improvment was consistent for the 3 temperatures studied.


Jurnal Kimia ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 82
Author(s):  
M. H. Rachmawati ◽  
H. Soetjipto ◽  
A. Ign A. Ign. Kristijanto

Overripe tempe is a food product that used by peoples in Indonesia as a food seasoning. So far, overripe tempe received less attention than fresh tempe and research of overripe tempe is rarely done. The objective of the study is to identify the fatty acid compounds of the  fifth day fermentation overripe tempe oil before and after purification . The overripe tempe oil of fifth day fermentation was extracted with soxhletation method using n – hexane solvent, then it was purified. The various fatty acids  of overripe tempe oil were analyzed by GC – MS. The purification process was done by using H3PO4 0,2% and NaOH 0,1N. The result of the study showed that before purification the oil  was composed of eight compounds  are palmitic acid (13,33%),  linoleic acid (77,57%), stearic acid (6,15%), and the five chemical components, Dasycarpidan – 1 - methanol, acetate ,  oleic acid, 9 - Octadecenamide ,Cholestane - 3, 7, 12, 25 - tetrol, tetraacetate, (3?, 5?, 7?, 12?) and  6, 7 – Epoxypregn – 4 – ene -9, 11, 18- triol - 3, 20 - dione, 11, 18 – diacetate have percentage of areas less than 3%. After purification the oil  was composed of palmitic acid (12,38% ), linoleic acid (80,35 %), stearic acid (5,84%), and 17 – Octadecynoic acid (1,42 %) .


2019 ◽  
Vol 54 (4) ◽  
pp. 367-374
Author(s):  
MO Aremu ◽  
AA Waziri ◽  
FJ Faleye ◽  
AM Magomya ◽  
UC Okpaegbe

There are several underexploited plant seeds or fruits in Nigeria with little information about their chemical composition. To this end a comprehensive study on fatty acid, phospholipids and phytosterols composition of bitter melon (Momordica charaantia) fruit and ebony tree (Diospyros mespiliformis) fruit pulp were determined using standard analytical techniques. The most concentrated fatty acid (%) was linoleic acid in Momordica charantia fruit (45.47) and 44.82 in Diospyros mespiliformis fruit pulp. The increasing order of the concentrated fatty acids in Momordica charantia fruit were: linolenic acid (2.38) < stearic acid (7.52) < oleic acid (20.18) < palmitic acid (23.64) < linoleic acid (45.47) while that of Diospyros mespiliformis fruit pulp were: linolenic acid (5.73) < stearic acid (8.62) < oleic acid (18.95) < palmitic acid (20.88) < linoleic acid (44.82). Arachidonic, arachidic, palmitoleic, margaric, behenic, erucic, lignoceric, myristic, lauric, capric and caprylic acids were present in small quantities with none of them recording up to 1.0% in both of the two samples. The results also showed low concentration of monounsaturated fatty acids (MUFA) (20.41%) in Momordica charantia fruit and 19.13% in Diospyros mespiliformis fruit pulp, and values of polyunsaturated fatty acid (PUFA) were 2.44 and 5.78% for the two samples, respectively. The respective phospholipids composition showed a highest concentration of phosphatidylcholine in Momordica charantia and Diospyros mespiliformis (100.31and 88.12 mg/100 g) while lysophosphatidylcholine and phosphatidic acid were the least concentrate values of 12.62 and 14.52 mg/100 g in Momordicacharantia and Diospyros mespiliformis, respectively. The concentrations of phytosterols were of low values except in sitosterol with values of 153.28 and 119.46 mg/100 g in Momordica charantia and Diospyros mespiliformis, respectively. This study provides an informative lipid profile that will serve as a basis for further chemical investigations and nutritional evaluation of Momordica charantia fruit and Diospyros mespiliformis fruit pulp. Bangladesh J. Sci. Ind. Res.54(4), 367-374, 2019


1980 ◽  
Vol 191 (2) ◽  
pp. 637-643 ◽  
Author(s):  
William W. Christie ◽  
Margaret L. Hunter

The effects of inclusion of different fatty acids in the medium on the rate of esterification of palmitic acid and its stereospecific distribution among the three positions of the triacyl-sn-glycerols by preparations of rat adipocytes in vitro have been determined. Myristic acid, stearic acid, oleic acid and linoleic acid were used as diluents and the concentration of the combined unesterified fatty acids in the medium was held constant; only the proportion of palmitic acid was varied. The amount of palmitic acid esterified was always linearly related to its relative concentration in the medium and was not significantly affected by the nature of the diluent fatty acid chosen. Constant relative proportions were recovered in triacylglycerols and in intermediates in each instance. The amount of palmitic acid esterified to each of the positions of the triacyl-sn-glycerols was linearly dependent on the relative proportion in the medium but the nature of the relationship was markedly influenced by which fatty acid was present. When stearic acid was present, simple relationships were found over the whole range tested. When either myristic acid, oleic acid or linoleic acid was present, abrupt changes in the manner of esterification of palmitic acid were observed in position sn-1 when the relative concentrations of palmitic acid and the diluent reached critical values, which differed with each fatty acid. In position sn-2 when oleic acid or linoleic acid was present, a similar change was observed, and in position sn-3 it was obtained with myristic acid as diluent. The results are discussed in terms of changes in the relative affinities of the acyltransferases for palmitic acid. Palmitic acid was esterified into various molecular species in proportions that indicated acylation with non-correlative specificity at higher relative concentrations but not at lower.


Author(s):  
Deniz Altuntaş ◽  
Hakan Allı ◽  
Erhan Kaplaner ◽  
Mehmet Öztürk

Human being have been consumed mushrooms due to their aroma and flavour. The macro-nutritional properties such as ash, protein fat, carbohydrate and energy and fatty acid ingredients of Lactarius deliciosus (L.) Gray, Lactarius deterrimus Gröger, Lactarius salmonicolor R. Heim & Leclair and Lactarius semisanguifluus R. Heim & Leclair were studied. The results indicate that the moisture was between in the range of 86.8-91.1%, while the ash 5.1-9.2%, and the protein 9.4-19.0%, and the fat 0.6-1.1%, and the carbohydrate 71.8-83.9, and the energy calculated between 372.1-382.6 kcal/100 g dry weights. The major fatty acids were determines as stearic acid, oleic acid, linoleic acid and palmitic acid in the range of 6.68-39.41%, 26.94-47.12%, 9.78-23.85% and 9.7-14.43% respectively.


2018 ◽  
Vol 1 (2) ◽  
pp. 19
Author(s):  
Winda Tri Wahyuni ◽  
Mia Srimiati

Used cooking oil is widely used by Indonesian people to fry many foods, which is the oil have been oxidized. On the other hand, Indonesia has a lot of unutilized waste products, such as bagasse. The design of the study was experimental, which added the bagasse to the used cooking oil to filtrate the physical and chemical impurities. There were 3 kinds of treatments, i.e. F1 (3% of bagasse), F2 (5% bagasse), F3 (7% bagasse), and control (without bagasse).<strong> </strong>The characteristics of used cooking oil (control) were: dark brown, rancid odor, having 0,39% of free fatty acid, 12,39 meq/Kg of peroxide value, 35,52% w/w palmitic acid, 35,31 oleic acid, 9,35% w/w linoleic acid, and 3,32% w/w stearic acid. The best treatment taken on the highest yield, organoleptic test, and peroxide number was F1 (3% bagasse), it could reduced free fatty acid and peroxide value become 0,26% and 6,67 mEq/kg. The number of fatty acids from the best treatment were dominated by palmitic acid (33,94% w/w), oleic acid (33,92% w/w), linoleic acid (9,03% w/w) and also had stearic acid (3,21% w/w).<strong> </strong>The bagasse can significantly reduce the organoleptic properties, the oxidation parameters, and other fatty acids of used oil (P&lt;0,05). So, the bagasse could potentially decrease the oxidation parameters of used cooking oil.


2012 ◽  
Vol 66 (2) ◽  
pp. 207-209 ◽  
Author(s):  
Boris Pejin ◽  
Ljubodrag Vujisic ◽  
Marko Sabovljevic ◽  
Vele Tesevic ◽  
Vlatka Vajs

The fatty acid composition of the moss species Atrichum undulatum (Hedw.) P. Beauv. (Polytrichaceae) and Hypnum andoi A.J.E. Sm. (Hypnaceae) collected in winter time were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) as a contribution to their chemistry. Eight fatty acids were identified in the chloroform/methanol extract 1:1 of A. undulatum (linoleic acid 26.80%, palmitic acid 22.17%, ?-linolenic acid 20.50%, oleic acid 18.49%, arachidonic acid 6.21%, stearic acid 3.34%, cis-5,8,11,14,17-eicosapentaenoic acid 1.52% and behenic acid 1.01%), while six fatty acids were found in the same type of extract of H. andoi (palmitic acid 63.48%, erucic acid 12.38%, stearic acid 8.08%, behenic acid 6.26%, lignoceric acid 5.16% and arachidic acid 4.64%). According to this study, the moss A. undulatum can be considered as a good source of both essential fatty acids for humans (linoleic acid and ?-linolenic acid) during the winter.


2002 ◽  
Vol 2002 ◽  
pp. 206-206 ◽  
Author(s):  
Z.C.T.R. Daniel ◽  
R.J. Wynn ◽  
A.M. Salter ◽  
P.J. Buttery

Compared to meat from other animals lamb contains high levels of saturated fat, particularly stearic acid which comprises 18% of the total fatty acids (Enser et al, 1996). This stearic acid can be desaturated in the tissue by stearoyl coenzyme A desaturase (SCD) to produce oleic acid. In sheep SCD is produced from a single gene and the levels of SCD mRNA in the tissue correlate well with oleic acid (Ward et al, 1998, Barber et al, 2000) suggesting that an upregulation of SCD activity may increase the relative proportions of unsaturated and saturated fatty acids and so significantly improve the nutritional quality of sheep meat. Our recent studies have shown that insulin increases SCD mRNA levels and monounsaturated fatty acid synthesis in cultured ovine adipose tissue explants (Daniel et al, 2001). The present study was designed to investigate whether feeding a diet believed to manipulate SCD mRNA concentrations would significantly alter the fatty acid composition of lamb.


2012 ◽  
Vol 7 (10) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Rashmi Kumari ◽  
Gopal Rao Mallavarapu ◽  
Vinod Kumar Jain ◽  
Sushil Kumar

Fatty oils of the seeds of Cleome viscosa accessions from Delhi, Jaipur, Faridabad, Surajkund and Hyderabad were methylated and analyzed by GC and GC-MS. The major fatty acids, identified as their methyl esters, of the oils from these five locations were palmitic acid (10.2-13.4%), stearic acid (7.2-10.2%), oleic acid (16.9-27.1%) and linoleic acid (47.0-61.1%). In addition, palmitoleic acid, octadec-(11 E)-enoicacid, arachidic acid, eicosa-(11 Z)-enoic acid, linolenic acid, heneicosanoic acid, behenic acid, lignoceric acid, pentacosanoic acid, hexacosanoic acid, 12-oxo-stearic acid, and the alkanes tetracosane, pentacosane, hexacosane, heptacosane, octacosane, nonacosane, triocontane, hentriacontane and dotriacontane, were also identified as minor and trace constituents in some of these oils.


1963 ◽  
Vol 18 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Wolfgang Heinen ◽  
Ingeborg V. D. Brand

1. Three fatty acid oxidizing enzymes, stearic and oleic acid oxidase as well as lipoxidase have been shown to be present in leaves of Gasteria verricuosa.2. By following the activity of these enzymes after injury we considered that they are involved in cutin synthesis which takes place at the wounded top of the leaf.3. Comparing the activity near the wounded part and the untreated inner sphere of the leaf lead to the conclusion that two of the oxidases (stearic and oleic oxidase) serve as substrate donors for lipoxydase by converting stearic into oleic and the latter into linoleic acid.4. Since the level of polyenic acids in leaves is high in comparison to saturated fatty acids, the activity of stearic and oleic oxidase only increases in the late phase of cutin synthesis, while lipoxydase is highly activated at the top directly after wounding and in the inner part of the leaf 3 - 4 weeks after cutin synthesis has started. At the same time pectinase shows its highest activity, suggesting that the formation of the pectic layer is secondary to the formation of cutin.5. Simultaneously to the enzymatic assays, cutin formation was followed by macro- and microscopic studies.6. The mode of action of lipoxydase and the interrelationship of the oxidizing enzymes in the formation of cutin are discussed and a formula for the structure of Gasteria cutin is given.7. According to the data presented here and the results obtained from literature, a possible scheme for cutin synthesis is given.


Sign in / Sign up

Export Citation Format

Share Document