scholarly journals Podocytes and the actin cytoskeleton as a feasible therapeutic target

2017 ◽  
Vol 118 (4) ◽  
Author(s):  
Sanja Sever ◽  
Changkyo Gu

Podocyte injury is a hallmark of the glomerular disease, which is a direct cause of chronic kidney diseases. Importantly, podocyte injury is a consequence of the dysregulation of the actin cytoskeleton. In diverse animal models of proteinuric glomerular disease, recovering the integrity of the actin structure in podocytes resulted in beneficial effects. In this review, we focus on the premise of targeting the actin cytoskeleton as a feasible therapeutics for treating chronic kidney diseases

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Domonkos Pap ◽  
Apor Veres-Székely ◽  
Beáta Szebeni ◽  
Réka Rokonay ◽  
Anna Ónody ◽  
...  

Abstract Background Recently, the role of IL-19, IL-20 and IL-24 has been reported in renal disorders. However, still little is known about their biological role. Methods Localization of IL-20RB was determined in human biopsies and in the kidneys of mice that underwent unilateral ureteral obstruction (UUO). Renal Il19, Il20 and Il24 expression was determined in ischemia/reperfusion, lipopolysaccharide, streptozotocin, or UUO induced animal models of kidney diseases. The effects of H2O2, LPS, TGF-β1, PDGF-B and IL-1β on IL19, IL20 and IL24 expression was determined in peripheral blood mononuclear cells (PBMCs). The extents of extracellular matrix (ECM) and α-SMA, Tgfb1, Pdgfb, and Ctgf expression were determined in the kidneys of Il20rb knockout (KO) and wild type (WT) mice following UUO. The effect of IL-24 was also examined on HK-2 tubular epithelial cells and NRK49F renal fibroblasts. Results IL-20RB was present in the renal biopsies of patients with lupus nephritis, IgA and diabetic nephropathy. Amount of IL-20RB increased in the kidneys of mice underwent UUO. The expression of Il19, Il20 and Il24 increased in the animal models of various kidney diseases. IL-1β, H2O2 and LPS induced the IL19, IL20 and IL24 expression of PBMCs. The extent of ECM, α-SMA, fibronectin, Tgfb1, Pdgfb, and Ctgf expression was lower in the kidney of Il20rb KO compared to WT mice following UUO. IL-24 treatment induced the apoptosis and TGF-β1, PDGF-B, CTGF expression of HK-2 cells. Conclusions Our data confirmed the significance of IL-19, IL-20 and IL-24 in the pathomechanism of renal diseases. Furthermore, we were the first to demonstrate the pro-fibrotic effect of IL-24.


Hematology ◽  
2011 ◽  
Vol 2011 (1) ◽  
pp. 538-542 ◽  
Author(s):  
Tomas Ganz ◽  
Elizabeta Nemeth

Abstract The review summarizes the current understanding of the role of hepcidin and ferroportin in normal iron homeostasis and its disorders. The various approaches to therapeutic targeting of hepcidin and ferroportin in iron-overload disorders (mainly hereditary hemochromatosis and β-thalassemia) and iron-restrictive anemias (anemias associated with infections, inflammatory disorders, and certain malignancies, anemia of chronic kidney diseases, and iron-refractory iron-deficiency anemia) are also discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tingting Li ◽  
Chao Yu ◽  
Shougang Zhuang

Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme that catalyzes the addition of methyl groups to histone H3 at lysine 27, leading to gene silencing. Mutation or over-expression of EZH2 has been linked to many cancers including renal carcinoma. Recent studies have shown that EZH2 expression and activity are also increased in several animal models of kidney injury, such as acute kidney injury (AKI), renal fibrosis, diabetic nephropathy, lupus nephritis (LN), and renal transplantation rejection. The pharmacological and/or genetic inhibition of EZH2 can alleviate AKI, renal fibrosis, and LN, but potentiate podocyte injury in animal models, suggesting that the functional role of EZH2 varies with renal cell type and disease model. In this article, we summarize the role of EZH2 in the pathology of renal injury and relevant mechanisms and highlight EZH2 as a potential therapeutic target for kidney diseases.


2018 ◽  
Vol 29 (10) ◽  
pp. 2529-2545 ◽  
Author(s):  
Yiqing Guo ◽  
Jesse Pace ◽  
Zhengzhe Li ◽  
Avi Ma’ayan ◽  
Zichen Wang ◽  
...  

BackgroundPodocyte injury is the hallmark of proteinuric kidney diseases, such as FSGS and minimal change disease, and destabilization of the podocyte’s actin cytoskeleton contributes to podocyte dysfunction in many of these conditions. Although agents, such as glucocorticoids and cyclosporin, stabilize the actin cytoskeleton, systemic toxicity hinders chronic use. We previously showed that loss of the kidney-enriched zinc finger transcription factor Krüppel-like factor 15 (KLF15) increases susceptibility to proteinuric kidney disease and attenuates the salutary effects of retinoic acid and glucocorticoids in the podocyte.MethodsWe induced podocyte-specific KLF15 in two proteinuric murine models, HIV-1 transgenic (Tg26) mice and adriamycin (ADR)-induced nephropathy, and used RNA sequencing of isolated glomeruli and subsequent enrichment analysis to investigate pathways mediated by podocyte-specific KLF15 in Tg26 mice. We also explored in cultured human podocytes the potential mediating role of Wilms Tumor 1 (WT1), a transcription factor critical for podocyte differentiation.ResultsIn Tg26 mice, inducing podocyte-specific KLF15 attenuated podocyte injury, glomerulosclerosis, tubulointerstitial fibrosis, and inflammation, while improving renal function and overall survival; it also attenuated podocyte injury in ADR-treated mice. Enrichment analysis of RNA sequencing from the Tg26 mouse model shows that KLF15 induction activates pathways involved in stabilization of actin cytoskeleton, focal adhesion, and podocyte differentiation. Transcription factor enrichment analysis, with further experimental validation, suggests that KLF15 activity is in part mediated by WT1.ConclusionsInducing podocyte-specific KLF15 attenuates kidney injury by directly and indirectly upregulating genes critical for podocyte differentiation, suggesting that KLF15 induction might be a potential strategy for treating proteinuric kidney disease.


2021 ◽  
Author(s):  
Jochen Reiser ◽  
Onur K Polat ◽  
Elena Isaeva ◽  
Ke Zhu ◽  
Manuel Noben ◽  
...  

Background Transient receptor potential channel 5 (TRPC5) is a non-selective cationic ion channel expressed in brain, kidney and other organs where its activation underlies podocyte injury in chronic kidney diseases. Specifically, it has been suggested that a podocyte TRPC5 plasma membrane relocation and channel activation following injury results from activation of Rac-1, propagating podocyte dysfunction and proteinuria. However, previous TRPC5 transgenic mouse studies had questioned a pathogenic role for TRPC5 in podocytes. This investigation was designed to specifically evaluate podocyte Rac-1 activation in the context of functional TRPC5 or a TRPC5 pore mutant to assess effects on proteinuria. Materials and Methods We employed single cell patch-clamp studies of cultured podocytes and studied proteinuria in transgenic mouse models to characterize the effects of TRPC5 following podocyte Rac-1 activation. Results Inhibition of TRPC5 by small molecules reportedly ameliorated proteinuria in murine models of proteinuric kidney diseases. In order to directly examine TRPC5 function following Rac-1-induced podocyte injury, we analyzed TRPC5 inhibition in podocyte specific Rac-1 (active) transgenic mice. In addition, we generated a double-transgenic mouse constitutively overexpressing either TRPC5 (TRPC5WT) or a TRPC5 dominant-negative pore mutant (TRPC5DN) in concert with podocyte specific and inducible activation of active Rac-1 (Rac-1Dtg). In electrophysiological experiments, active TRPC5 was detected in primary podocytes overexpressing TRPC5 but not in podocytes with endogenous TRPC5 expression, nor with Rac-1 overexpressing podocytes. TRPC5 inhibition did not change proteinuria in mice with active podocyte Rac-1, nor did an increase or loss of TRPC5 activity affected podocyte injury in Rac-1Dtg animals. Administration of TRPC5 inhibitors, ML204 and AC1903, did not alleviate podocyte Rac-1 induced proteinuria. Conclusion TRPC5 inhibition did not modify podocyte Rac-1 induced proteinuria in mice.


2021 ◽  
Vol 22 (8) ◽  
pp. 4132
Author(s):  
Katarzyna Kiliś-Pstrusińska ◽  
Anna Wiela-Hojeńska

Currently in Europe, despite the many advances in production technology of synthetic drugs, the interest in natural herbal medicines continues to increase. One of the reasons for their popular use is the assumption that natural equals safe. However, herbal medicines contain pharmacologically active ingredients, some of which have been associated with adverse effects. Kidneys are particularly susceptible to injury induced by toxins, including poisonous constituents from medicinal plants. The most recognized herb-induced kidney injury is aristolochic acid nephropathy connected with misuse of certain Traditional Chinese herbal medicines. Data concerning nephrotoxicity of plant species of European origin are scarce. Here, we critically review significant data of the nephrotoxicity of several plants used in European phytotherapy, including Artemisia herba-alba, Glycyrrhiza glabra, Euphorbia paralias, and Aloe). Causative mechanisms and factors predisposing to intoxications from the use of herbs are discussed. The basic intention of this review is to improve pharmacovigilance of herbal medicine, especially in patients with chronic kidney diseases.


Author(s):  
Melissa C. Stein ◽  
Fabian Braun ◽  
Christian F. Krebs ◽  
Madeleine J. Bunders

AbstractAcute and chronic kidney diseases are major contributors to morbidity and mortality in the global population. Many nephropathies are considered to be immune-mediated with dysregulated immune responses playing an important role in the pathogenesis. At present, targeted approaches for many kidney diseases are still lacking, as the underlying mechanisms remain insufficiently understood. With the recent development of organoids—a three-dimensional, multicellular culture system, which recapitulates important aspects of human tissues—new opportunities to investigate interactions between renal cells and immune cells in the pathogenesis of kidney diseases arise. To date, kidney organoid systems, which reflect the structure and closer resemble critical aspects of the organ, have been established. Here, we highlight the recent advances in the development of kidney organoid models, including pluripotent stem cell-derived kidney organoids and primary epithelial cell-based tubuloids. The employment and further required advances of current organoid models are discussed to investigate the role of the immune system in renal tissue development, regeneration, and inflammation to identify targets for the development of novel therapeutic approaches of immune-mediated kidney diseases.


Sign in / Sign up

Export Citation Format

Share Document