scholarly journals Application of Advance Constrained Simplex Method for MIMO Systems in Quantum Communication Networks

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Tomonobu Sato

This paper first describes advanced constrained simplex method (advanced complex method), then it shows that this complex procedure has any problems when it’s taken for finding the maximum of a general nonlinear function of several variables within a constrained region is described in wireless communication systems, especially for multiple-input multiple-out (MIMO Configuration). Next advanced constrained simplex method is described how to resolve the problem of the multiple-input multiple-out, and shown how to be efficient compared with the complex method and the simplex method by some simulations. And this wireless network design can be used to MIMO systems in Quantum Communication networks. The feature of technology by which the system told by this paper can get optimum solution by a little search number of times compared with a conventional system in the MIMO environment with more than one optimal value, and is at the place. This system was applied to the Quantum network environment by this paper. This can achieve more compact than the conventional Quantum network environment.

Author(s):  
В.Б. КРЕЙНДЕЛИН ◽  
М.В. ГОЛУБЕВ

Совместный с прекодингом автовыбор антенн на приемной и передающей стороне - одно из перспективных направлений исследований для реализации технологий Multiple Transmission and Reception Points (Multi-TRP, множество точек передачи и приема) в системах со многими передающими и приемными антеннами Massive MIMO (Multiple-Input-Multiple-Output), которые активно развиваются в стандарте 5G. Проанализированы законодательные ограничения, влияющие на применимость технологий Massive MIMO, и специфика реализации разрабатываемого алгоритма в миллиметровомдиапа -зоне длин волн. Рассмотрены алгоритмы формирования матриц автовыбора антенн как на передающей, так и на приемной стороне. Сформулирована строгая математическая постановка задачи для двух критериев работы алгоритма: максимизация взаимной информации и минимизация среднеквадратичной ошибки. Joint precoding and antenna selection both on transmitter and receiver sides is one of the promising research areas for evolving toward the Multiple Transmission and Reception Points (Multi-TRP) concept in Massive MIMO systems. This technology is under active development in the coming 5G 3GPP releases. We analyze legal restrictions for the implementation of 5G Massive MIMO technologies in Russia and the specifics of the implementation of the developed algorithm in the millimeter wavelength range. Algorithms of antenna auto-selection matrices formation on both transmitting and receiving sides are considered. Two criteria are used for joint antenna selection and precoding: maximizing mutual information and minimizing mean square error.


Author(s):  
Layak Ali Sd ◽  
K. Kishan Rao ◽  
M. Sushanth Bab

In this papers an efficient ordering scheme for an ordered successive interference cancellation detector is determined under the bit error rate minimization criterion for multiple-input multiple-output(MIMO) communication systems using transmission power control. From the convexity of the Q-function, we evaluate the choice of suitable quantization characteristics for both the decoder messages and the received samples in Low Density Parity Check (LDPC)-coded systems using M-QAM schemes. We derive the ordering strategy that makes the channel gains converge to their geometric mean. Based on this approach, the fixed ordering algorithm is first designed, for which the geometric mean is used for a constant threshold using correlation among ordering results.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 927 ◽  
Author(s):  
Alemaishat ◽  
Saraereh ◽  
Khan ◽  
Affes ◽  
Li ◽  
...  

Aiming at the problem of high computational complexity due to a large number of antennas deployed in mmWave massive multiple-input multiple-output (MIMO) communication systems, this paper proposes an efficient algorithm for optimizing beam control vectors with low computational complexity based on codebooks for millimeter-wave massive MIMO systems with split sub-arrays hybrid beamforming architecture. A bidirectional method is adopted on the beam control vector of each antenna sub-array both at the transmitter and receiver, which utilizes the idea of interference alignment (IA) and alternating optimization. The simulation results show that the proposed algorithm has low computational complexity, fast convergence, and improved spectral efficiency as compared with the state-of-the-art algorithms.


Author(s):  
Hoai Trung Tran

The Multiple Input Multiple Output (MIMO) systems using relays are of interest for high-speed radio communication systems. Currently, most of the articles are interested in the model of three nodes with purposes such as increasing the channel capacities (mutual information) or reducing the minimum mean square of error. This paper extends to more than one relay and is concerned with the maximum channel capacity. It is assumed that the channel matrices between source and relay as well as relay and receiver are random matrices; the relay precoders are also assumed to be random and known at the receiver. The article proposes that the Lagrange multiplier finding algorithm using the Newton – Raphson optimization method is more straightforward than the traditional finding algorithm using the first and second derivatives but still gives a higher channel capacity.


Author(s):  
Sonti Swapna

Abstract: A combination of multiple-input multiple-output (MIMO) systems and orthogonal frequency division multiplexing (OFDM) technologies can be employed in modern wireless communication systems to achieve high data rates and improved spectrum efficiency. For multiple input multiple output (MIMO) systems, this paper provides a Rayleigh fading channel estimation technique based on pilot carriers. The channel is estimated using traditional Least Square (LS) and Minimum Mean Square (MMSE) estimation techniques. The MIMO-OFDM system's performance is measured using the Bit Error Rate (BER) and Mean Square Error (MSE) levels. Keywords: MIMO, MMSE, Channel estimation, BER, OFDM


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 17288-17308 ◽  
Author(s):  
Hung Viet Nguyen ◽  
Zunaira Babar ◽  
Dimitrios Alanis ◽  
Panagiotis Botsinis ◽  
Daryus Chandra ◽  
...  

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 309
Author(s):  
Muddasar Naeem ◽  
Giuseppe De Pietro ◽  
Antonio Coronato

The current wireless communication infrastructure has to face exponential development in mobile traffic size, which demands high data rate, reliability, and low latency. MIMO systems and their variants (i.e., Multi-User MIMO and Massive MIMO) are the most promising 5G wireless communication systems technology due to their high system throughput and data rate. However, the most significant challenges in MIMO communication are substantial problems in exploiting the multiple-antenna and computational complexity. The recent success of RL and DL introduces novel and powerful tools that mitigate issues in MIMO communication systems. This article focuses on RL and DL techniques for MIMO systems by presenting a comprehensive review on the integration between the two areas. We first briefly provide the necessary background to RL, DL, and MIMO. Second, potential RL and DL applications for different MIMO issues, such as detection, classification, and compression; channel estimation; positioning, sensing, and localization; CSI acquisition and feedback, security, and robustness; mmWave communication and resource allocation, are presented.


Author(s):  
Xiao Chen ◽  
Zaichen Zhang ◽  
Liang Wu ◽  
Jian Dang

Abstract In this journal, we investigate the beam-domain channel estimation and power allocation in hybrid architecture massive multiple-input and multiple-output (MIMO) communication systems. First, we propose a low-complexity channel estimation method, which utilizes the beam steering vectors achieved from the direction-of-arrival (DOA) estimation and beam gains estimated by low-overhead pilots. Based on the estimated beam information, a purely analog precoding strategy is also designed. Then, the optimal power allocation among multiple beams is derived to maximize spectral efficiency. Finally, simulation results show that the proposed schemes can achieve high channel estimation accuracy and spectral efficiency.


Sign in / Sign up

Export Citation Format

Share Document