Analytical prediction of the integral risk of violation of the acceptable performance of the set of standard processes in a life cycle of highly available systems Part 1. Mathematical models and methods

Author(s):  
A.A. Nistratov

With the widespread adoption and development of the process approach, it became clear that the standard processes used in the life cycle of highly available systems undoubtedly have a cumulative impact on risks that arise. However, the possibilities for predicting risks in practice are significantly limited: private and integral risks of violation of the acceptable performance of implemented processes, estimated by simplified methods, do not reflect the real picture, and specialized models of specific systems and processes require painstaking and long-term scientific and methodological study. Thus, there was a critical methodological contradiction between objective needs and real capabilities in predicting private and integral risks. Carrying out a scientific search for ways to eliminate the identified contradiction, the main goal of this work (in two parts) is to create scientifically based methodological and software-technological solutions for analytical prediction of the integral risk of violation of the acceptable performance of a given set of standard processes in the life cycle of systems. In the first part of the work, for 30 standard processes defined by GOST R 57193 (characterized by typical actions and real or hypothetical input data for modeling and linked to possible scenarios for their use in the creation and/or operation and/or disposal of systems), mathematical models and methods for predicting the integral risk of violating the acceptable performance of a given set of standard processes with the possibility of traceable analytical dependence on influencing factors are proposed. The second part of the work is devoted to the description of the proposed software-technological solutions for risks prediction using models and methods of the first part for solving practical problems of system engineering.

2017 ◽  
Vol 41 (1) ◽  
pp. 26 ◽  
Author(s):  
Forbes McGain ◽  
Graham Moore ◽  
Jim Black

Objective The aim of the present study was to quantify hospital steam steriliser resource consumption to provide baseline environmental data and identify possible efficiency gains. We sought to find the amount of steriliser electricity and water used for active cycles and for idling (standby), and the relationship between the electricity and water consumption and the mass and type of items sterilised. Methods We logged a hospital steam steriliser’s electricity and water meters every 5 min for up to 1 year. We obtained details of all active cycles (standard 134°C and accessory or ‘test’ cycles), recording item masses and types. Relationships were investigated for both the weight and type of items sterilised with electricity and water consumption. Results Over 304 days there were 2173 active cycles, including 1343 standard 134°C cycles that had an average load mass of 21.2 kg, with 32% of cycles <15 kg. Electricity used for active cycles was 32 652 kWh (60% of total), whereas the water used was 1 243 495 L (79%). Standby used 21 457 kWh (40%) electricity and 329 200 L (21%) water. Total electricity and water consumption per mass sterilised was 1.9 kWh kg–1 and 58 L kg–1, respectively. The linear regression model predicting electricity use was: kWh = 15.7+ 0.14 × mass (in kg; R2 = 0.58, P < 0.01). Models for water and item type were poor. Electricity and water use fell from 3 kWh kg–1 and 200 L kg–1, respectively, for 5-kg loads to 0.5 kWh kg–1 and 20 L kg–1, respectively, for 40-kg loads. Conclusions Considerable electricity and water use occurred during standby, load mass was only moderately predictive of electricity consumption and light loads were common yet inefficient. The findings of the present study are a baseline for steam sterilisation’s environmental footprint and identify areas to improve efficiencies. What is known about the topic? There is increasing interest in the environmental effects of healthcare. Life cycle assessment (‘cradle to grave’) provides a scientific method of analysing environmental effects. Although data of the effects of steam sterilisation are integral to the life cycles of reusable items and procedures using such items, there are few data available. Further, there is scant information regarding the efficiency of the long-term in-hospital use of sterilisers. What does this paper add? We quantified, for the first time, long-term electricity and water use of a hospital steam steriliser. We provide useful input data for future life cycle assessments of all reusable, steam-sterilised equipment. Further, we identified opportunities for improved steriliser efficiencies, including rotating off idle sterilisers and reducing the number of light steriliser loads. Finally, others could use our methods to examine steam sterilisers and many other energy-intensive items of hospital equipment. What are the implications for practitioners? We provide useful input data for all researchers examining the environmental footprint of reusable hospital equipment and procedures using such equipment. As a result of the present study, staff in the hospital sterile supply department have reduced steam steriliser electricity and water use considerably without impeding sterilisation throughput (and reduced time inefficiencies). Many other hospitals could benefit from similar methods to improve steam steriliser and other hospital equipment efficiencies.


2016 ◽  
Vol 2016 (14) ◽  
pp. 830-854
Author(s):  
Tzahi Y Cath ◽  
Ryan W Holloway ◽  
Leslie Miller-Robbie ◽  
Mehul Patel ◽  
Jennifer R Stokes ◽  
...  

2020 ◽  
Author(s):  
Kyoung Ja Moon ◽  
Chang-Sik Son ◽  
Jong-Ha Lee ◽  
Mina Park

BACKGROUND Long-term care facilities demonstrate low levels of knowledge and care for patients with delirium and are often not properly equipped with an electronic medical record system, thereby hindering systematic approaches to delirium monitoring. OBJECTIVE This study aims to develop a web-based delirium preventive application (app), with an integrated predictive model, for long-term care (LTC) facilities using artificial intelligence (AI). METHODS This methodological study was conducted to develop an app and link it with the Amazon cloud system. The app was developed based on an evidence-based literature review and the validity of the AI prediction model algorithm. Participants comprised 206 persons admitted to LTC facilities. The app was developed in 5 phases. First, through a review of evidence-based literature, risk factors for predicting delirium and non-pharmaceutical contents for preventive intervention were identified. Second, the app, consisting of several screens, was designed; this involved providing basic information, predicting the onset of delirium according to risk factors, assessing delirium, and intervening for prevention. Third, based on the existing data, predictive analysis was performed, and the algorithm developed through this was calculated at the site linked to the web through the Amazon cloud system and sent back to the app. Fourth, a pilot test using the developed app was conducted with 33 patients. Fifth, the app was finalized. RESULTS We developed the Web_DeliPREVENT_4LCF for patients of LTC facilities. This app provides information on delirium, inputs risk factors, predicts and informs the degree of delirium risk, and enables delirium measurement or delirium prevention interventions to be immediately implemented with a verified tool. CONCLUSIONS This web-based application is evidence-based and offers easy mobilization and care to patients with delirium in LTC facilities. Therefore, the use of this app improves the unrecognized of delirium and predicts the degree of delirium risk, thereby helping initiatives for delirium prevention and providing interventions. This would ultimately improve patient safety and quality of care. CLINICALTRIAL none


2019 ◽  
Vol 43 (6) ◽  
pp. 347-354 ◽  
Author(s):  
Daniela Popp ◽  
Romanus Diekmann ◽  
Lutz Binder ◽  
Abdul R. Asif ◽  
Sara Y. Nussbeck

Abstract Various information technology (IT) infrastructures for biobanking, networks of biobanks and biomaterial management are described in the literature. As pre-analytical variables play a major role in the downstream interpretation of clinical as well as research results, their documentation is essential. A description for mainly automated documentation of the complete life-cycle of each biospecimen is lacking so far. Here, the example taken is from the University Medical Center Göttingen (UMG), where the workflow of liquid biomaterials is standardized between the central laboratory and the central biobank. The workflow of liquid biomaterials from sample withdrawal to long-term storage in a biobank was analyzed. Essential data such as time and temperature for processing and freezing can be automatically collected. The proposed solution involves only one major interface between the main IT systems of the laboratory and the biobank. It is key to talk to all the involved stakeholders to ensure a functional and accepted solution. Although IT components differ widely between clinics, the proposed way of documenting the complete life-cycle of each biospecimen can be transferred to other university medical centers. The complete documentation of the life-cycle of each biospecimen ensures a good interpretability of downstream routine as well as research results.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 384
Author(s):  
Tomasz Dembiczak ◽  
Marcin Knapiński

Based on the research results, coefficients in constitutive equations, describing the kinetics of dynamic, meta-dynamic, and static recrystallization in high-carbon bainitic steel during hot deformation were determined. The developed mathematical model takes into account the dependence of the changing kinetics in the structural size of the preliminary austenite grains, the value of strain, strain rate, temperature, and time. Physical simulations were carried out on rectangular specimens. Compression tests with a flat state of deformation were carried out using a Gleeble 3800. Based on dilatometric studies, coefficients were determined in constitutive equations, describing the grain growth of the austenite of high-carbon bainite steel under isothermal annealing conditions. The aim of the research was to verify the developed mathematical models in semi-industrial conditions during the hot-rolling process of high-carbon bainite steel. Analysis of the semi-industrial studies of the hot-rolling and long-term annealing process confirmed the correctness of the predicted mathematical models describing the microstructure evolution.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3549
Author(s):  
Tulane Rodrigues da Silva ◽  
Afonso Rangel Garcez de Azevedo ◽  
Daiane Cecchin ◽  
Markssuel Teixeira Marvila ◽  
Mugahed Amran ◽  
...  

The urbanization process contributes to the growth of solid waste generation and causes an increase in environmental impacts and failures in the management of solid waste. The number of dumps is a concern due to the limited implementation and safe disposal of this waste. The interest in sustainable techniques has been growing in relation to waste management, which is largely absorbed by the civil construction sector. This work aimed to review plastic waste, especially polyethylene terephthalate (PET), that can be incorporated with construction materials, such as concrete, mortars, asphalt mixtures, and paving. The use of life-cycle assessment (LCA) is related, as a tool that allows the sustainability of products and processes to be enhanced in the long term. After analyzing the recent literature, it was identified that studies related to plastic wastes in construction materials concentrate sustainability around the alternative destination of waste. Since the plastic waste from different production chains are obtained, it was possible to affirm the need for a broader assessment, such as the LCA, providing greater quantification of data making the alternative processes and products more sustainable. The study contributes to enhance sustainability in alternative building materials through LCA.


Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 215
Author(s):  
Bojana Petrović ◽  
Xingxing Zhang ◽  
Ola Eriksson ◽  
Marita Wallhagen

The objective of this paper was to explore long-term costs for a single-family house in Sweden during its entire lifetime. In order to estimate the total costs, considering construction, replacement, operation, and end-of-life costs over the long term, the life cycle cost (LCC) method was applied. Different cost solutions were analysed including various economic parameters in a sensitivity analysis. Economic parameters used in the analysis include various nominal discount rates (7%, 5%, and 3%), an inflation rate of 2%, and energy escalation rates (2–6%). The study includes two lifespans (100 and 50 years). The discounting scheme was used in the calculations. Additionally, carbon-dioxide equivalent (CO2e) emissions were considered and systematically analysed with costs. Findings show that when the discount rate is decreased from 7% to 3%, the total costs are increased significantly, by 44% for a 100-year lifespan, while for a 50 years lifespan the total costs show a minor increase by 18%. The construction costs represent a major part of total LCC, with labor costs making up half of them. Considering costs and emissions together, a full correlation was not found, while a partial relationship was investigated. Results can be useful for decision-makers in the building sector.


2020 ◽  
Author(s):  
Paul Bingley ◽  
Lorenzo Cappellari ◽  
Konstantinos Tatsiramos

Abstract Using administrative data for the population of Danish men and women, we develop an empirical model which accounts for the joint earnings dynamics of siblings and youth community peers. We provide the first decomposition of the sibling correlation of permanent earnings into family and community effects allowing for life cycle dynamics and extending the analysis to consider other outcomes. We find that family is the most important factor influencing sibling correlations of earnings, education and unemployment. Community background matters for shaping the sibling correlation of earnings and unemployment early in the working life, but its importance quickly diminishes.


1972 ◽  
Vol 29 (5) ◽  
pp. 583-587 ◽  
Author(s):  
A. R. Carlson

When fathead minnows (Pimephales promelas) were exposed to five concentrations (0.008–0.68 mg/liter) of the insecticide carbaryl for 9 months and throughout a life cycle, the highest concentration prevented reproduction and decreased survival. At the high concentration, testes contained motile sperm and ovaries were in a flaccid condition and appeared to be in a resorptive state. At the 0.68 mg/liter concentration, carbaryl appeared to contribute to mortality of larvae (produced by unexposed parents) within 30 days of hatching. Survival of young grown in the 0.008 mg/liter concentration was reduced. Since no demonstrable effects were noted for survival, growth, or reproduction at the 0.017, 0.062, and 0.21 mg/liter concentrations, this low survival value is considered not due to carbaryl. The 96-hr median tolerance concentration (TL 50) and the lethal threshold concentration (LTC) for 2-month-old fathead minnows were 9.0 mg/liter. The maximum acceptable toxicant concentration (MATC) for fathead minnows exposed to carbaryl in water with a hardness of 45.2 mg/liter and a pH of 7.5 lies between 0.21 and 0.68 mg/liter. The application factors (MATC/96-hr TL50 and MATC/LTC) both lie between 0.023 and 0.075.


Sign in / Sign up

Export Citation Format

Share Document