scholarly journals Crop production in relation to cultural practices in the Chromolaena odorata fallow system in South-West Cote d'Ivoire

Author(s):  
J.J.P. Slaats ◽  
B.H. Janssen ◽  
M. Wessel

Farmers grow food crops alternated by short fallow periods of the naturally re-establishing Chromolaena odorata in response to the growing demand for land in humid Africa. It is unknown whether current cultural practices in this system are appropriate and how land use can further be intensified. Maize production was measured in experiments on three sites cleared from a two-, three- and four-year-old C. odorata fallow, respectively. On the two-year-old site, bearing the lowest quantity of vegetation biomass, maize response to removing, burning and intensively burning (i.e.: burning after adding vegetation from outside) the slashed vegetation was studied as well. Various weeding frequencies and fertilizers were applied in the experiments to better assess the effects of the length of the fallow period and the clearing methods. The experiments were conducted during three consecutive cropping seasons to provide an indication of changes in yield over time. During the first season after clearing, maize yield decreased from 3.8 on the four-year-old fallow to 2.6 t ha-1 on the two-year-old fallow. This reduction was due to a lower availability of P and N, and to a higher competition from weeds. Burning or intensively burning the vegetation raised yields of the unfertilized crop, up to 1.2 t ha-1. It increased the availability of phosphorus but did not clearly reduce competition from weeds. In the second and third season, yield fell to 1.5 t ha-1 irrespective of the fallow age. Burning slowed down the yield decline over time. Application of P- and N-fertilizers raised crop yields under all conditions and maintained them up to 5 t ha-1 during the three seasons. Weeding twice instead of once reduced the yield decline over time on the young fallow only. Results suggest that in the C. odorata crop production system a fallow period of two years is too short to be fully effective, that burning the C. odorata slash benefits crop production, even when its amount is limited, and that growing maize for more than one season is worthwhile only where fertilizers are applied.

2020 ◽  
Vol 4 (4) ◽  
pp. 303-313
Author(s):  
Noam Eckshtain-Levi ◽  
Susanna Leigh Harris ◽  
Reizo Quilat Roscios ◽  
Elizabeth Anne Shank

Plant-growth-promoting bacteria (PGPB) are used to improve plant health and promote crop production. However, because some PGPB (including Bacillus subtilis) do not maintain substantial colonization on plant roots over time, it is unclear how effective PGPB are throughout the plant growing cycle. A better understanding of the dynamics of plant root community assembly is needed to develop and harness the potential of PGPB. Although B. subtilis is often a member of the root microbiome, it does not efficiently monoassociate with plant roots. We hypothesized that B. subtilis may require other primary colonizers to efficiently associate with plant roots. We utilized a previously designed hydroponic system to add bacteria to Arabidopsis thaliana roots and monitor their attachment over time. We inoculated seedlings with B. subtilis and individual bacterial isolates from the native A. thaliana root microbiome either alone or together. We then measured how the coinoculum affected the ability of B. subtilis to colonize and maintain on A. thaliana roots. We screened 96 fully genome-sequenced strains and identified five bacterial strains that were able to significantly improve the maintenance of B. subtilis. Three of these rhizobacteria also increased the maintenance of two strains of B. amyloliquefaciens commonly used in commercially available bioadditives. These results not only illustrate the utility of this model system to address questions about plant–microbe interactions and how other bacteria affect the ability of PGPB to maintain their relationships with plant roots but also may help inform future agricultural interventions to increase crop yields. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


1978 ◽  
Vol 26 (2) ◽  
pp. 181-190
Author(s):  
H. van Arkel

The effects of early ploughing (before the start of the dry season) and late ploughing on the grain and DM yields of a forage maize and cold-tolerant forage and grain sorghum crops are reported. It appeared that on a shallow soil no significant effects on crop production could be shown, but on a deep soil with good water-holding capacity, crop yields were increased considerably by reducing soil moisture evaporation in the dry period prior to the growing season. In DM yield forage sorghum outyielded maize, a difference which was accentuated when mechanized harvesting systems were used in lodged crops. Forage sorghum proved to be more lodging-resistant than maize but, even when lodged, was harvestable without too much difficulty. The use of small-plot maize yield trials is considered to have limited applicability to mechanized harvesting systems when presently available Kenyan maize hybrids are used. Lodging was the major limiting field factor for the harvesting of heavy maize crops. The highest net yields recorded for maize and sorghum were 12.0 and 23.7 t DM/ha, resp. The higher yield of sorghum was probably not due to better drought resistance but to lower lodging susceptibility and a longer growing period. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2020 ◽  
Author(s):  
Shengli Liu ◽  
Wenbin Wu

<p>Increasing drought event is one of the major threats to yield stability and crop production. However, the precise quantification of crop response to such extreme weather is still in lack. Unlike the deterministic researches of drought effects, we propose an insightful probabilistic perspective to quantify drought impacts on maize yield across China. The county-specific combination of annual maize yield anomaly and standardized precipitation evapotranspiration index (SPEI) across its growing season during 1981-2010 was utilized to build a copula-based probabilistic diagram, for the purpose to predict yield loss risk under different drought types. The results reveal that, when compared with the expected long-term yield, the reduction of maize yield and its uncertainty was in line with the drought severity across the growth season, with yield reduced by -5.14%, -8.05% and -3.94% under moderately dry, severely dry, and extremely dry, respectively. Despite the spatial pattern of SPEI existed varying timescales in determining yield anomaly across different counties, the number of counties where maize experienced drought with a response time starts from June and July accounted for 55.28% of counties across China, and that drought with one month duration occupied 50.29%. A considerable gap in the likelihood of maize yield reduction was detected under drought and under non-drought conditions, which further confirmed the negative impacts of drought on maize yield. Moreover, the conditional estimation revealed that the semi-arid region was more susceptible to the drought-induced yield loss risk of maize in comparison to other regions. The probability of yield loss for maize amplified according to the drought severity along with the significant differences (P < 0.05) among the extreme, severely and moderately drought conditions across all of these sub-regions. Our results highlight the improving knowledge of drought on crop yield anomaly and consequent adaptation was essential for the decision making in coping with extreme weather in agricultural production.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuhui Wang ◽  
Christoph Müller ◽  
Joshua Elliot ◽  
Nathaniel D. Mueller ◽  
Philippe Ciais ◽  
...  

AbstractIrrigation is the largest sector of human water use and an important option for increasing crop production and reducing drought impacts. However, the potential for irrigation to contribute to global crop yields remains uncertain. Here, we quantify this contribution for wheat and maize at global scale by developing a Bayesian framework integrating empirical estimates and gridded global crop models on new maps of the relative difference between attainable rainfed and irrigated yield (ΔY). At global scale, ΔY is 34 ± 9% for wheat and 22 ± 13% for maize, with large spatial differences driven more by patterns of precipitation than that of evaporative demand. Comparing irrigation demands with renewable water supply, we find 30–47% of contemporary rainfed agriculture of wheat and maize cannot achieve yield gap closure utilizing current river discharge, unless more water diversion projects are set in place, putting into question the potential of irrigation to mitigate climate change impacts.


2003 ◽  
pp. 26-29
Author(s):  
Attila Megyes ◽  
Tamás Rátonyi ◽  
László Huzsvai

In a long-term field experiment set up at the Látókép experimental station of the Center of Agricultural Sciences of Debrecen University, the data of the last five years (1995-1999) were analyzed to determine the crop production factors with the greatest influence on maize production and the relationship and interactions between irrigation and fertilization.In the extremely dry year of 1995, fertilization was found to cause substantial yield depression in the absence of irrigation. According to results of analysis of variance, fertilization significantly reduced the maize yield by 40-90% compared to control plots. Under irrigated conditions, there was a considerable increase in the maize yield, the yield surplus being 4.4-9.4 t ha-1, depending on the nutrient supply level.During the period from 1996-1999, when rainfall conditions were favorable for maize, fertilization significantly increased the maize yield even without irrigation over the average of the four years. The yield surplus due to fertilization was 3.9-4.6 t ha-1, depending on the fertilization rates. The maximum yield surplus was obtained on plots fertilized with 120 N kg ha-1, while at the rate of 240 N kg ha-1 the maize yield did not differ significantly from this value. During the period examined, corn yield was significantly higher at all three nutrient supply levels as the result of irrigation than in the non-irrigated treatment. As in the case of non-irrigated conditions, the highest fertilizer dose did not result in a substantial yield increase. An analysis of the interaction between fertilization and irrigation indicated that the yield-increasing effect of fertilization was not significantly different under irrigated and non-irrigated conditions. The significant year x irrigation interaction was confirmed by the fact that the yield surplus (1.3-2.3 t ha-1) differed greatly from the irrigation effect recorded in 1995.


2018 ◽  
pp. 33-46
Author(s):  
János Nagy ◽  
Adrienn Széles

The effect and interaction of crop production factors on maize yield has been examined for nearly 40 years at the Látókép Experiment Site of the University of Debrecen in a long-term field experiment that is unique and acknowledged in Europe. The research aim is to evaluate the effect of fertilisation, tillage, genotype, sowing, plant density, crop protection and irrigation. The analysis of the database of the examined period makes it possible to evaluate maize yield, as well as the effect of crop production factors and crop year, as well as the interaction between these factors. Based on the different tillage methods, it can be concluded that autumn ploughing provides the highest yield, but its effect significantly differed in irrigated and non-irrigated treatments. The periodical application of strip tillage is justified in areas with favourable soil conditions and free from compated layers (e.g. strip – strip – ploughing – loosening). Under conditions prone to drought, but especially in several consecutive years, a plant density of 70–80 thousand crops per hectare should be used in the case of favourable precipitation supply, but 60 thousand crops per hectare should not be exceeded in dry crop years. The yield increasing effect of fertilisation is significant both under non-irrigated and irrigated conditions, but it is much more moderate in the non-irrigated treatment. Selecting the optimum sowing date is of key importance from the aspect of maize yield, especially in dry crop years. Irrigation is not enough in itself without intensive nutrient management, since it may lead to yield decrease. The results of research, development and innovation, which are based on the performed long-term field experiment, contribute to the production technological methods which provide an opportunity to use sowing seeds, fertilisers and pesticides in a regionally tailored and differentiated way, adapted to the specific needs of the given plot, as well as to plan each operation and to implement precision maize production.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2002
Author(s):  
Shengbao Wei ◽  
Anchun Peng ◽  
Xiaomin Huang ◽  
Aixing Deng ◽  
Changqing Chen ◽  
...  

Identifying the contributions of climate factors and soil fertility to crop yield is significant for the assessment of climate change impacts on crop production. Three 20-year field experiments were conducted in major Chinese wheat-maize cropping areas. Over the 20-year period, crop yield and soil properties showed significantly dissimilar variation trends under similar climate changes at each experimental site. The correlation between climatic factors and crop yield varied greatly among the fertilization regimes and experimental sites. Across all the fertilization regimes and the experimental sites, the average contribution rates of soil properties to wheat and maize yield were 45.7% and 53.2%, respectively, without considering climate factors, and 40.4% and 36.6%, respectively, when considering climate factors. The contributions of soil properties to wheat and maize yield variation when considering climate factors were significantly lower than those without considering climate factors. Across all experimental sites and all fertilization regimes, the mean contribution rates of climate factors to wheat and maize yield were 29.5% and 33.0%, respectively. The contribution rates of the interaction of climate and soil to wheat and maize yield were 3.7% and −0.9%, respectively. Under balanced fertilization treatments (NPK and NPKM), the change in the contribution rate of soil properties to wheat or maize yield was not obvious, and the average contribution rates of the interaction of climate and soil to wheat and maize yield were positive, at 14.8% and 9.5%, respectively. In contrast, under unbalanced fertilization treatments (CK and N), the contribution rates of soil properties to wheat or maize yield decreased, and the average contribution rates of the interaction of climate and soil were negative, at −7.4% and −11.2%, respectively. The above results indicate that climate and soil synergistically affected crop yields and that, with the optimization of the fertilization regime, positive interactions gradually emerged.


2012 ◽  
pp. 227-231
Author(s):  
János Nagy ◽  
Adrienn Ványiné Széles

The effect of crop production factors on maize yield are examined on chernozem soil in a more than 30 year old long-term experiment on the Látókép Experiment Site of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen. The aim of research is to evaluate the effect of fertilisation, cultivation, plant number, genorype and irrigation. The analysis of the data in the database of the examined period makes it possible to evaluate the effect of maize yield, as well as that of the crop production factors and the crop year, while the correlations and interactions between these factors were also examined. During the examination of the cultivation treatments, it was concluded that the highest yield was obtained as a result of autumn ploughing, but its effect largely differs in the irrigated and the nonirrigated treatments. Based on our examinations, strip cultivation should be applied periodically (e.g. strip – strip – ploughing – loosening) in areas with favourable soil conditions free from compacted layers. In years with smaller, average precipitation supply or when the precipitation was higher than average, higher plant numbers were more favourable. Under drier conditions, but especially in several consecutively dry years, a lower plant number can be recommended which is not higher than 60 thousand per hectare. In the case of favourable water supply, 70-80 thousand plants per hectare can be  used. The yield increasing effect of fertilisation was significant in the case of both non-irrigated and irrigated conditions, but it was much more moderate in the non-irrigated treatment. The extent of weed coverage was significantly affected by the previous crop. In the case of a favourable previous crop (wheat), the weed coverage was significantly lower than after an unfavourable previous crop (maize). In the case of the same previous crop (maize), the extent of weed coverage was mostly determined by the crop year and the extent of precipitation supply. Irrigation is not enough in itself, because if it was not accompanied by intensive nutrient management, yields started to decline.The results of researhc, development and innovation contributed to the technological method which makes it possible to apply locally adjusted sowing seed, fertiliser and pesticide in a differentiated way, as well as to change the method of operations within the given plot.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Teerachai Amnuaylojaroen ◽  
Pavinee Chanvichit ◽  
Radshadaporn Janta ◽  
Vanisa Surapipith

Climate change has an effect human living in a variety of ways, such as health and food security. This study presents a prediction of crop yields and production risks during the years 2020–2029 in northern Thailand using the coupling of a 1 km resolution regional climate model, which is downscaled using a conservative remapping method, and the Decision Support System for the Transfer of Agrotechnology (DSSAT) modeling system. The accuracy of the climate and agricultural model was appropriate compared with the observations, with an Index of Agreement (IOA) in the range of 0.65–0.89. The results reveal the negative effects of climate change on rice and maize production in northern Thailand. We show that, in northern Thailand, rainfed rice and maize production may be reduced by 5% for rice and 4% for maize. Moreover, rice and maize production risk analysis showed that maize production is at a high risk of low production, while rice production is at a low risk. Additional irrigation, crop diversification, the selection of appropriate planting dates and methods of conservation are promising adaptation strategies in northern Thailand that may improve crop production.


2018 ◽  
Vol 6 (10) ◽  
pp. 194-201
Author(s):  
Mohammed D. Toungos

This study determines the efficacy of Sasakawa technology to maize yield improvement and meeting the demand of the populace in terms of food crop production at the time of unpredictable weather conditions in Mubi. The field trials were conducted during the 2017 cropping season at the teaching and research farm of the Faculty of Agriculture, Adamawa state University Mubi to evaluate the effect of Sasakawa Technology as a panacea to maize yield improvement and meeting the vagaries of climate change in Mubi. Mubi, located in the Northern Guinea Savannah of Nigeria. Mubi is situated between latitude 100 10’’ and 100 30’’ North of the Equator and between longitude 130 10 and 130 30’’ E of the Greenwich meridian and at an altitude of 696 m above mean sea level (MSL). Extra early white (EEW) variety of maize was obtained from Farm office of the University, were sown at three different sowing dates 19th July, 29th July and 8th August, 2018. There was a large yield difference between the Sasakawa Technology of maize production and local farmers’ output in Mubi, despite the limited opportunities to sustainability and increase in the productivity of the crop in order to adapt to vagaries of climate change. Yields recorded during the three sowing dates were 2,967kg/ha, 2,930kg/ha and 2,921kg/ha while on the neighboring farmer’s field was 1,897kg/ha. It indicated that, the Sasakawa technology used in terms of spacing of 25cm x 25cm between plants and 75cm x75cm between rows, single seed per stand and appropriate fertilizer application increased maize yield more than the neighboring farmers fields. The Sasakawa technology recorded mostly two cobs per stand, longer cobs mean lengths with maximum grain filled and the grains were significantly bigger when compared to the farmer’s fields. Even though some critics argue that, Sasakawa Global 2000 technology deals with high-external-input technologies (HEIT) which are too costly to some farmers, but the out – put out weights the input in terms of yields, economic returns and also sustained the vagaries of climatic effects due to timely sowing and maintenance of the Sasakawa technology techniques. To boost maize production in Mubi and at this time of unpredictable climate and its effects, the Sasakawa technology is recommended to be adopted by the farmers.


Sign in / Sign up

Export Citation Format

Share Document