scholarly journals Effect of sepiolit mineral on thermal properties and thermal conductivity of wood plastic composite materials

Author(s):  
FERHAT ÖZDEMİR ◽  
Ayşegül ÇOT ◽  
Hakkı ALMA
2018 ◽  
Vol 777 ◽  
pp. 499-507 ◽  
Author(s):  
Ossi Martikka ◽  
Timo Kärki ◽  
Qing Ling Wu

3D printing has rapidly become popular in both industry and private use. Especially fused deposition modeling has increased its popularity due to its relatively low cost. The purpose of this study is to increase knowledge in the mechanical properties of parts made of wood-plastic composite materials by using 3D printing. The tensile properties and impact strength of two 3D-printed commercial wood-plastic composite materials are studied and compared to those made of pure polylactic acid. Relative to weight –mechanical properties and the effect of the amount of fill on the properties are also determined. The results indicate that parts made of wood-plastic composites have notably lower tensile strength and impact strength that those made of pure polylactic acid. The mechanical properties can be considered sufficient for low-stress applications, such as visualization of prototypes and models or decorative items.


Author(s):  
Mazhar Hussain ◽  
Daniel Levacher ◽  
Nathalie Leblanc ◽  
Hafida Zmamou ◽  
Irini Djeran Maigre ◽  
...  

Crude bricks are composite materials manufactured with sediments and natural fibers. Natural fibers are waste materials and used in construction materials for reinforcement. Their reuse in manufacturing reinforced crude bricks is eco-friendly and improves mechanical and thermal characteristics of crude bricks. Factors such as type of fibers, percentage of fibers, length of fibers and distribution of fibers inside the bricks have significant effect on mechanical, physical and thermal properties of biobased composite materials. It can be observed by tests such as indirect tensile strength, compressive strength for mechanical characteristics, density, shrinkage, color for physical properties, thermal conductivity and resistivity for thermal properties, and inundation test for durability of crude bricks. In this study, mechanical and physical characteristics of crude bricks reinforced with palm oil fibers are investigated and effect of change in percentage and length of fibers is observed. Crude bricks of size 4*4*16 cm3 are manufactured with dredged sediments from Usumacinta River, Mexico and reinforced with palm oil fibers at laboratory scale. For this purpose, sediments and palm oil fibers characteristics were studied. Length of fibers used is 2cm and 3cm. Bricks manufacturing steps such as sediments fibers mixing, moulding, compaction and drying are elaborated. Dynamic compaction is opted for compaction of crude bricks due to energy control. Indirect tensile strength and compressive strength tests are conducted to identify the mechanical characteristics of crude bricks. Physical properties of bricks are studied through density and shrinkage. Durability of crude bricks is observed with inundation test. Thermal properties are studied with thermal conductivity and resistivity test. Distribution and orientation of fibers and fibers counting are done to observe the homogeneity of fibers inside the crude bricks. Finally, comparison between the mechanical characteristics of crude bricks manufactured with 2cm and 3cm length with control specimen was made.


2017 ◽  
Vol 62 (2) ◽  
pp. 1307-1310 ◽  
Author(s):  
K. Pietrzak ◽  
A. Gładki ◽  
K. Frydman ◽  
D. Wójcik-Grzybek ◽  
A. Strojny-Nędza ◽  
...  

AbstractThe main current of publication is focused around the issues and problems associated with the formation of composite materials with Cu matrix and reinforcing phases in the various carbon nanoforms. The core of the research has been focused on thermal conductivity of these composites types. This parameter globally reflects the state of the structure, quality of raw materials and the technology used during the formation of composite materials. Vanishingly low affinity of copper for carbon, multilayered forms of graphene, the existence of critical values of graphene volume in the composite are not conducive to the classic procedures of composites designing. As a result, the expected, significant increase in thermal conductivity of composites is not greater than for pure copper matrix. Present paper especially includes: (i) data of obtaining procedure of copper/graphene mixtures, (ii) data of sintering process, (iii) the results of structure investigations and of thermal properties. Structural analysis revealed the homogenous distribution of graphene in copper matrix, the thermal analysis indicate the existence of carbon phase critical concentration, where improvement of thermal diffusivity to pure copper can occur.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3369
Author(s):  
Xupeng Song ◽  
Xiaofeng Xue ◽  
Wen Qi ◽  
Jin Zhang ◽  
Yang Zhou ◽  
...  

In this paper, in order to improve the electrical and thermal properties of SiC/EP composites, the methods of compounding different crystalline SiC and micro-nano SiC particles are used to optimize them. Under different compound ratios, the thermal conductivity and breakdown voltage parameters of the composite material were investigated. It was found that for the SiC/EP composite materials of different crystal types of SiC, when the ratio of α and β silicon carbide is 1:1, the electrical performance of the composite material is the best, and the breakdown strength can be increased by more than 10% compared with the composite material filled with single crystal particles. For micro-nano compound SiC/EP composites, different total filling amounts of SiC correspond to different optimal ratios of micro/nano particles. At the optimal ratio, the introduction of nanoparticles can increase the breakdown strength of the composite material by more than 10%. Compared with the compound of different crystalline SiC, the advantage is that the introduction of a small amount of nanoparticles can play a strong role in enhancing the break-down field strength. For the filled composite materials, the thermal conductivity mainly depends on whether an effective heat conduction channel can be constructed. Through experiments and finite element simulation calculations, it is found that the filler shape and particle size have a greater impact on the thermal conductivity of the composite material, when the filler shape is rounder, the composite material can more effectively construct the heat conduction channel.


2011 ◽  
Vol 189-193 ◽  
pp. 4043-4048 ◽  
Author(s):  
Jin Xiang Chen ◽  
Su Jun Guan ◽  
Shun Hua Zhang ◽  
Jing Jing Zheng ◽  
Juan Xie ◽  
...  

The relationship between properties of BF-WPC and the content of BF were studied, when wood-plastics composite (WPC) was reinforced by 12 mm and 3 mm short basalt fiber (SBF). The results showed that there may have some uneven distributions of SBF in WPC, when the content of 12 mm BF exceeded 30%. Restricted to the uneven distribution and the quantity of “end weak’’, it formed the close comprehensive property of BF-WPC by the length of 12mm and 3mm BF. The comprehensive property of BF-WPC has a maximum range of 15%-30% of the content of 12 mm BF. Compared to pure WPC, the tensile and bending strength of BF-WPC have improved. However, the reinforce effect of BF-WPC is different and is dependent on the index of each property. The BF-WPC plate can be developed with different properties and be a cost-effective material by choosing different length and content of BF.


Sign in / Sign up

Export Citation Format

Share Document