scholarly journals Sterilisasi dan Induksi Daun Muda Durian (Durio zibethinus) Dalam Medium MS Dengan Penambahan Kinetin dan IAA Secara In Vitro

2021 ◽  
Vol 1 (1) ◽  
pp. 34-38
Author(s):  
Gatot Supangkat ◽  
Innaka Ageng Rineksane ◽  
Kurniawati Pamuji

A research  to study the sterilization   method  and application   of Kinetin  and IAA to induce the Durian  young  leaf (Durio zibethinus) in MS  medium   was conducted in Balai Benih Induk Hortikultura in Salaman  Magelang  district  of Central  Java  started  on September  until December 2003. The Laboratory experiment   was arranged  in two phases,  which were  the optimation  phase of sterilization   and  induction   phase.  At  the  first  phase,  the  sterilization method  used  was  the modification   of Mulya  (2001) method.  The modification   use of sterilant,  vitamin  C antioxidant, Alcohol  70 %, Benlate, Agrept,  Tween-20  and Betadine  were done to obtain  effectiveness   of the sterilization.  Explants  planted  then in MS medium  for two weeks. Contamination   time, percentage of contamination   and viabilitas  (percentage of living explants)  were observed  then.  At the second phase,  the treatments were arranged  in a 3 x 3 factorial  completely   randomized   design  (CRD)  to observed  the influence  of Kinetin  and IAA combination.   The concentration   of Kinetin  observed were 2, 4, and 6 mg/I, where  as the IAA concentration   were 0.5,  1.0, and  1.5 mg/I. All treatments were  repeated  three  times,  with three samples  on each  replication.   The percentage   of browning explants, percentage  of contaminated   explants,  site of  contamination   and percentage of explants live were observed  at the end of incubation. The results  showed that sterilization  of Durian young leaves explants  with 1  g/l deterjent  for 15 minutes  then by 2 g/l Benlate  and Agrept  for 10 minutes,  then by 1  g/200 mg Vitamin C, then by Alcohol  70 % for 1  minute, then by 20% Clorox,  then by 2 drip of Tween-20  for 10 minute and then by Betadine  decreased  the contamination down to 50 %, and this kind of sterilization  was relatively better than  the other  kinds.  Application   of growth  regulators   were  not  able  to induce  explants growth,  but stimulated  callus formation  at the cutting surface though,  in the application  of Kinetin 4 mg/1 + IAA 0,5 mg/I, Kinetin 4 mg/1 + IAA  1,5 mg/1, Kinetin  6 mg/I+  IAA 0,5  mg/1 and Kinetin 6 mg/l+IAA   1,0 mg/I.

2021 ◽  
Vol 27 (1) ◽  
pp. 68-77
Author(s):  
Mina Taghizadeh ◽  
Mahboubeh Ganji Dastjerdi

Abstract During different phases of in vitro culture, plant tissues may be exposed to some stresses that never encounter in their natural habitats. The most significant stresses which interfere with in vitro culture are pathogenic contamination and browning disorder. Since browning sign is occurred during all phases of in vitro culture of Spartium junceum L., the present study was done preventing explants from browning during disinfection and callogenesis phases using exposure time of sterilants (ethanol 0, 30, 60 s and home bleach 0, 10, 15 min), antioxidant compounds (PVP 0.5%, Activated charcoal 0.1%, Curcumin 0.1%), Running water (30 and 60 min) plant growth regulators (2,4-D 0, 0.5, 1 and 2 mg L-1 and BA 0, 0.1 and 0.2 mg L-1), and by changing light/dark conditions was designed. The results showed that ethanol 70% (30 s) in combination with home bleach 20% (10 min) had the best effect in control contaminations and browning sign in nodal explants of S. junceum. The application of PVP 0.5% in medium was the best treatment to control of browning nodal explants in callus induction phase. The highest callus formation and the lowest explant browning were obtained on the medium supplemented with 0.5 mg L-1 2,4-D under the darkness condition. According to the results of this study, how disinfection methods, culture medium compositions and light conditions were effective on the browning and callogenesis of Spartium junceum L.


2018 ◽  
Vol 9 (3) ◽  
pp. 475-480
Author(s):  
Paulo Tarso Barbosa Sampaio ◽  
Lyana Silva Jardim ◽  
Ariel Dotto Blind ◽  
Flavio Mauro Souza Bruno

Somatic embryogenesis from callus induced in epicotyl and hypocotyl segments can be viable native species in order to better -benefit ratio costs, and rates of clonal multiplication. In this sense, two trials were established to induce callus and adventitious buds on hypocotyl and epicotyl segments of cumaru bean seedlings germinated in vitro in different concentrations and combinations of growth regulators. At first, we used the MS medium supplementwith ANA (0.0, 1.5 mg.L-1) and TDZ (0.0, 4.0 and 8.0 mg.L-1) distributed in factorial 2 x 3 x 2 (x auxin cytokinin x explant) with eight replications. In the second, it was used the WPM medium supplemented with BAP (2.0 mg L-1) and plus 2,4-D (2.0 and 4.0 mg L-1) in a factorial 2 x 2 (auxin x explant) with 15 repetitions each. They were evaluating callus formation and the average number of adventitious shoots during the period of 90 days. The results indicated that the highest average for callus formation was observed when the explants were subjected to concentrations of 8.0 mg L-1 TDZ combined with 1.5 mg L-1 ANA in MS medium. For the formation of buds, the WPM medium plus 2.0 mg L-1 2,4-D in the second experiment, induced higher number of shoots, being significant the use of auxin, and its interaction with the type of explant.


2016 ◽  
Vol 6 (1) ◽  
pp. 33
Author(s):  
ROSMAINA ROSMAINA ◽  
ZULFAHMI ZULFAHMI ◽  
PROBO SUTEJO ◽  
ULFIATUN ULFIATUN ◽  
MAISUPRATINA MAISUPRATINA

One of the problem of Eurycoma longifolia Jack propagation was low germination percentage due to recalcitrant seeds and slow growth of seedling from cutting propagation. To overcome this problem is required propagation of Eurycoma longifolia via in vitro culture. The objective of this research was to know the effect of Auxin (2,4-D and NAA) and Cytokines (BAP and Kinetin)  on Eurycoma longifolia callus induction via leaf and petiole explants. In this study, we used plant growth regulator of 2,4 D, NAA, BAP and Kinetin in several levels.  The observed variables were appearing callus time, callus color and callus texture. The results of this study showed that MS medium supplemented with 1 ppm NAA+ 1 ppm BAP was able to induce callus formation in leaf explant for 6 months after culture. While MS medium supplemented with 1 ppm 2,4-D, 1 ppm BAP, combination of 2,4-D and Kinetin and combination of 2,4-D and BAP can induce callus formation from petiole. All the callus formation has yellow color and yellow brown color. The petiole explant that is grown in MS medium supplemented with 1 ppm BAP induced of callus in short time (18 days after culture).


2018 ◽  
Vol 47 (2) ◽  
pp. 538-543
Author(s):  
Rodrigo Kelson S. REZENDE ◽  
Ana Maria N. SCOTON ◽  
Maílson V. JESUS ◽  
Zeva V. PEREIRA ◽  
Fernanda PINTO

Baru (Dipteryx alata Vog.) is a species with great economic and environmental potential; it has popular acceptance, besides being a very productive species. Alternative propagation methods are important for species maintenance and exploration. Thus, micropropagation emerged as an alternative technique, providing genetic stability and the production of a large number of seedlings. The aim of the present investigation was to develop a callus induction protocol for in vitro baru explants. The tested explants were nodal, internodal and foliar segments. The explants were disinfected for 30 seconds in 70% alcohol (v/v) and 2 minutes in sodium hypochlorite (1.25% active chlorine). This was followed by triple washing. The inoculation was carried out in test tubes containing 15 mL MS medium (30 g L-1 sucrose, 6 g L-1 agar and 100 mg L-1 ascorbic acid) supplemented with 2.0 mg L-1 naphthalene acetic acid (NAA). The solution also contained 0.0, 2.5 or 5.0 mg L-1 of 6-benzylaminopurine (BAP) with the pH adjusted to 5.8. In the incubation phase, the explants were cultured for seven days in the dark and then subjected to a photoperiod of 16 hours (43 µmol m-2 s-1) at 25 ± 2 °C. The treatments were studied with 2.5, 5.0, 7.5 or 10.0 mg L-1 BAP additions to the MS. Callus formation, contamination and oxidation evaluations were undertaken. The results obtained when using 2.0 mg L-1 NAA concluded that such a treatment should be used to induce callogenesis from nodal explants, while for the tested baru leaf explants, the best results for callus formation were given by the combination of 2.0 mg L-1 NAA with 2.5 mg L-1 of BAP to.


2015 ◽  
Vol 49 (4) ◽  
pp. 199-204 ◽  
Author(s):  
S Mahmud ◽  
S Akter ◽  
IA Jahan ◽  
S Khan ◽  
A Khaleque ◽  
...  

A protocol was developed to produce large amount of callus in short a period of time from leaf explants of Stevia rebaudiana Bert. The highest amount of white callus was obtained on MS medium supplemented with 2.5 mg/l 2, 4-D and 0.5 mg/l BAP after 3 weeks of inoculating leaf segments. On the other hand, 0.5 mg/l BAP and 1.0 mg/l Kn exhibits poor performance towards callus formation while after using 1.0 mg/l Kn alone did not develop any callus. In this experiment, highest amount of green callus was obtained when MS medium supplemented with 2.5 mg/l NAA and 10% coconut water was used. An improved analytical method HPLC was applied to analyze stevioside extracted from the leaf and callus of Stevia rebaudiana. The stevioside in each sample were analyzed by comparing their retention times with those of the standards. The retention time (RT) of stevioside for leaves were found 14.96 and for callus 13.81 mins. The percentage of stevioside content from leaves and callus was 12.19% and 12.62% respectively DOI: http://dx.doi.org/10.3329/bjsir.v49i4.22621 Bangladesh J. Sci. Ind. Res. 49(4), 199-204, 2014


2019 ◽  
Vol 43 ◽  
Author(s):  
Olga Vladimirovna Mitrofanova ◽  
Irina Vjacheslavovna Mitrofanova ◽  
Tatyana Nikolaevna Kuzmina ◽  
Nina Pavlovna Lesnikova-Sedoshenko ◽  
Sergey Vladimirovich Dolgov

ABSTRACT Apricot is one of the most valuable commercial fruits. In vitro propagation of apricot is very important for rapid multiplication of cultivars with desirable traits and production of cleaning up and virus-free plants. Low frequency of multiplication is the main limiting factor for traditional propagation methods. In this regard, the objective of our investigation was to study the morphogenetic capacity of apricot leaf explants of the promising cultivars ‘Iskorka Tavridy’, ‘Magister’ and ‘Bergeron’ for regeneration system development and solving some breeding questions. The source of explants was in vitro plants regenerated and cultured on QL medium. Leaves were maintained in the dark at 24±1 °C in thermostat for three-four weeks. Morphogenic callus and structures were mainly formed at the central and proximal parts of leaves on MS, QL and WPM media with 1.5 or 2.0 mg L-1 BAP and 1.5 or 2.0 mg L-1 IAA in different combinations, or TDZ (0.6 and 1.3 mg L-1). Callus with adventive buds was transferred to regeneration medium and placed into a growth chamber at 24±1 °C and 16-hour photoperiod with a light intensity of 37.5 μmol m-2 s-1. The best results were obtained when adaxial leaf surface was in contact with the culture medium. Frequency of leaf callus formation on MS medium with 1.5 mg L-1 BAP and 1.5 mg L-1 IAA was higher in the explants of ‘Iskorka Tavridy’ (80.0%) than in - ‘Bergeron’ (50.0%) and ‘Magister’ (36.7%). The best results of callogenesis for ‘Magister’ was obtained on MS medium with 1.3 mg L-1 TDZ (53.3%). Active microshoot regeneration in ‘Iskorka Tavridy’ cultivar was shown on MS medium with BAP and IAA and in ‘Magister’ cultivar - on MS medium with TDZ. Rhizogenesis was obtained on half strength MS medium with 2.0 mg L-1 IBA.


2016 ◽  
Vol 24 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Mafatlal M. Kher ◽  
Deepak Soner ◽  
Neha Srivastava ◽  
Murugan Nataraj ◽  
Jaime A. Teixeira da Silva

Abstract Clerodendrum phlomidis L. f. is an important medicinal plant of the Lamiaceae family, particularly its roots, which are used for various therapeutic purposes in a pulverized form. The objective of this study was to develop a standard protocol for axillary shoot proliferation and rooting of C. phlomidis for its propagation and conservation. Nodal explants were inoculated on Murashige and Skoog (MS) medium that was supplemented with one of six cytokinins: 6-benzyladenine, kinetin, thidiazuron, N6-(2-isopentenyl) adenine (2iP), trans-zeatin (Zea) and meta-topolin. Callus induction, which was prolific at all concentrations, formed at the base of nodal explants and hindered shoot multiplication and elongation. To avoid or reduce callus formation with the objective of increasing shoot formation, the same six cytokinins were combined with 4 μM 2,3,5-tri-iodobenzoic acid (TIBA) alone or in combination with 270 μM adenine sulphate (AdS). Nodal explants that were cultured on the medium supplemented with 9.12 μM Zea, 4 μM TIBA and 270 μM AdS produced significantly more and longer shoots than on medium without TIBA and AdS. Half-strength MS medium supplemented with 8.05 μM α-naphthaleneacetic acid was the best medium for root formation. Most (75%) in vitro rooted plantlets were successfully acclimatized under natural conditions.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 560c-560
Author(s):  
Yong Cheong Koh ◽  
Fred T. Davies

The leaves of vegetative stolons of greenhouse grown Cryptanthus `Marian Oppenheimer' (wide leaf clone) were cultured in modified MS media to induce adventitious shoot formation via callus formation. The best callus induction medium was basal MS medium with 10 μM NAA, IBA and BA. Pure green (843), maroon (3), striped (2) and albino plantlets were obtained. Most of the albino plantlets were stunted, tightly clumped together and impossible to score. The medium which produced the highest average number of non-albino plantlets was basal MS medium with 0.3 μM NAA, IBA and BA All non-albino plantlets were rooted in MS medium with 5.4 μM NAA and transplanted ex vitro with a survival rate of 96.7%. The maroon plantlets became green two weeks after transplanting. Histological studies revealed that C. `Marian Oppenheimer' (wide leaf clone) has two tunicas (L1 and L2) and a corpus (L3). Callus on the leaf explant arose mainly from the L2 and L3. Apparently C. `Marian Oppenheimer' (wide leaf clone) is a GWG periclinal chimera.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 528a-528
Author(s):  
Sharon A. Bates ◽  
John E. Preece ◽  
John H. Yopp

Both greenhouse-grown white ash plants derived from tissue culture and rooted microshoots in high humidity trays were inoculated with 11 tumor-inducing Agrobacterium strains. Eight strains stimulated mutative gall formation. Plants inoculated with strain A281 exhibited a higher frequency of callus formation (greenhouse-22.2%; microshoots-18.8%) than other strains at the site of the wound. Therefore, strain A281 was used to inoculate seed and seedling explants in vitro. Explants were placed on MS medium containiner no plant growth regulators and inoculated at 0, 3, 5, 7, or 10 days after initiation. Plants inoculated at 10 days showed a higher frequency of callus formation (16.4%) than with earlier inoculations. Also, rewounding of the explant at inoculation resulted in a higher frequency of callus formation (11.3%) compared to not rewounding the explant (3.9%).


HortScience ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 757-763 ◽  
Author(s):  
Meijun Zhang ◽  
Duanduan Zhao ◽  
Zengqiang Ma ◽  
Xuedong Li ◽  
Yulan Xiao

Momordica grosvenori plantlets were cultured in vitro for 26 d on sucrose- and hormone-free Murashige and Skoog (MS) medium with four levels of photosynthetic photon flux density (PPFD), namely 25, 50, 100, or 200 μmol·m−2·s−1, and a CO2 concentration of 1000 μmol·mol−1 in the culture room [i.e., photoautotrophic micropropagation (PA) treatments]. The control treatment was a photomixotrophic culture using MS medium containing sucrose and NAA with a CO2 concentration of 400 μmol·mol−1 in the culture room and a PPFD of 25 μmol·m−2·s−1. Based on the results, a second experiment was conducted to investigate the effects of α-naphthaleneacetic acid (NAA) and sucrose on callus formation. For this, plantlets were grown in the absence and presence of either NAA or sucrose. Compared with the control, the PA plantlet had a well-developed rooting system, better shoot, greater chlorophyll content, and higher electron transport rate and the ex vitro survival percentage was increased by 31%. Both sucrose and NAA stimulated callus formation on the shoot bases of control plantlets, whereas calluses did not form on the plantlets grown in sucrose- and hormone-free medium. The stronger light intensities increased the fresh and dry weight of plantlets. A PPFD of 100 μmol·m−2·s−1 was more suitable for the growth of M. grosvenori plantlets. Therefore, photoautotrophic plantlets grown at high light intensities would be better suited to the intense irradiance found in sunlight.


Sign in / Sign up

Export Citation Format

Share Document