scholarly journals Trends of human influenza infection in Chhattisgarh: a retrospective observational study

Author(s):  
Raj Sharma ◽  
Rupendra K. Bharti ◽  
Sanat Sharma ◽  
Mahendra K. Jaiswal

Background: Human influenza virus was recognized as a pandemic in 2009 by the World Health Organization (WHO). Since then many newer incidences was recognized in India, but there was no sufficient data from all state of India. This study will provide data from the Chhattisgarh state of India.Methods: It was a retrospective observational study from December 2015 to November 2017. All patient samples with suspected influenza infection were collected and analysed by Real-time reverse polymerase chain reaction (RT-PCR).Results: 341 patients’ sample was collected and analysed; among these samples, 07.9% of patients have all three serotype of influenza positive. Raipur district has the highest incidence of influenza A followed by Durg and Raigarh district of Chhattisgarh. There was no significant difference between male and female who was affected by the influenza virus.Conclusions: The incidence of Human influenza virus is lesser in Chhattisgarh as compare to the average states of India and the state capital has a higher rate of sample collection as well as positive influenza infection.

2009 ◽  
Vol 53 (10) ◽  
pp. 4457-4463 ◽  
Author(s):  
Yuki Furuse ◽  
Akira Suzuki ◽  
Hitoshi Oshitani

ABSTRACT Influenza A virus infects many species, and amantadine is used as an antiviral agent. Recently, a substantial increase in amantadine-resistant strains has been reported, most of which have a substitution at amino acid position 31 in the M2 gene. Understanding the mechanism responsible for the emergence and spread of antiviral resistance is important for developing a treatment protocol for seasonal influenza and for deciding on a policy for antiviral stockpiling for pandemic influenza. The present study was conducted to identify the existence of drug pressure on the emergence and spread of amantadine-resistant influenza A viruses. We analyzed data on more than 5,000 virus sequences and constructed a phylogenetic tree to calculate selective pressures on sites in the M2 gene associated with amantadine resistance (positions 26, 27, 30, and 31) among different hosts. The phylogenetic tree revealed that the emergence and spread of the drug-resistant M gene in different hosts and subtypes were independent and not through reassortment. For human influenza virus, positive selection was detected only at position 27. Selective pressures on the sites were not always higher for human influenza virus than for viruses of other hosts. Additionally, selective pressure on position 31 did not increase after the introduction of amantadine. Although there is a possibility of drug pressure on human influenza virus, we could not find positive pressure on position 31. Because the recent rapid increase in drug-resistant virus is associated with the substitution at position 31, the resistance may not be related to drug use.


2003 ◽  
Vol 77 (15) ◽  
pp. 8418-8425 ◽  
Author(s):  
Mikhail Matrosovich ◽  
Tatyana Matrosovich ◽  
Jackie Carr ◽  
Noel A. Roberts ◽  
Hans-Dieter Klenk

ABSTRACT No reliable cell culture assay is currently available for monitoring human influenza virus sensitivity to neuraminidase inhibitors (NAI). This can be explained by the observation that because of a low concentration of sialyl-α2,6-galactose (Sia[α2,6]Gal)-containing virus receptors in conventional cell lines, replication of human virus isolates shows little dependency on viral neuraminidase. To test whether overexpression of Sia(α2,6)Gal moieties in cultured cells could make them suitable for testing human influenza virus sensitivity to NAI, we stably transfected MDCK cells with cDNA of human 2,6-sialyltransferase (SIAT1). Transfected cells expressed twofold-higher amounts of 6-linked sialic acids and twofold-lower amounts of 3-linked sialic acids than parent MDCK cells as judged by staining with Sambucus nigra agglutinin and Maackia amurensis agglutinin, respectively. After transfection, binding of a clinical human influenza virus isolate was increased, whereas binding of its egg-adapted variant which preferentially bound 3-linked receptors was decreased. The sensitivity of human influenza A and B viruses to the neuraminidase inhibitor oseltamivir carboxylate was substantially improved in the SIAT1-transfected cell line and was consistent with their sensitivity in neuraminidase enzyme assay and with the hemagglutinin (HA) receptor-binding phenotype. MDCK cells stably transfected with SIAT1 may therefore be a suitable system for testing influenza virus sensitivity to NAI.


1937 ◽  
Vol 66 (2) ◽  
pp. 151-168 ◽  
Author(s):  
Richard E. Shope

Swine recovered from infection with either swine influenza or swine influenza virus alone are usually not only immune but refractory to human influenza infection. Swine recovered from infection with a mixture of human influenza virus and H. influenzae suis are usually immune to swine influenza while those recovered from infection with human influenza virus alone are usually not immune to swine influenza. The possible mechanisms involved in the cross-immunity between the influenza viruses are discussed.


2012 ◽  
Vol 19 (7) ◽  
pp. 979-990 ◽  
Author(s):  
Shigefumi Okamoto ◽  
Sumiko Matsuoka ◽  
Nobuyuki Takenaka ◽  
Ahmad M. Haredy ◽  
Takeshi Tanimoto ◽  
...  

ABSTRACTThe antigenicity of seasonal human influenza virus changes continuously; thus, a cross-protective influenza vaccine design needs to be established. Intranasal immunization with an influenza split-virion (SV) vaccine and a mucosal adjuvant induces cross-protection; however, no mucosal adjuvant has been assessed clinically. Formalin-inactivated intact human and avian viruses alone (without adjuvant) induce cross-protection against the highly pathogenic H5N1 avian influenza virus. However, it is unknown whether seasonal human influenza formalin-inactivated whole-virion (WV) vaccine alone induces cross-protection against strains within a subtype or in a different subtype of human influenza virus. Furthermore, there are few reports comparing the cross-protective efficacy of the WV vaccine and SV vaccine-mucosal adjuvant mixtures. Here, we found that the intranasal human influenza WV vaccine alone induced both the innate immune response and acquired immune response, resulting in cross-protection against drift variants within a subtype of human influenza virus. The cross-protective efficacy conferred by the WV vaccine in intranasally immunized mice was almost the same as that conferred by a mixture of SV vaccine and adjuvants. The level of cross-protective efficacy was correlated with the cross-reactive neutralizing antibody titer in the nasal wash and bronchoalveolar fluids. However, neither the SV vaccine with adjuvant nor the WV vaccine induced cross-reactive virus-specific cytotoxic T-lymphocyte activity. These results suggest that the intranasal human WV vaccine injection alone is effective against variants within a virus subtype, mainly through a humoral immune response, and that the cross-protection elicited by the WV vaccine and the SV vaccine plus mucosal adjuvants is similar.


2018 ◽  
Vol 6 (2) ◽  
pp. 122-126
Author(s):  
Diksha Pokhrel ◽  
Ishab Poudel ◽  
Rabin Raut ◽  
Sitaram Aryal ◽  
Krishna Acharya

Pigs play a key role in inter-species transmission of influenza virus, because they have receptors to both avian and human influenza viral strains. A study was conducted in three different districts namely Bhaktapur, Kavre and Banke with face to face type of questionnaire survey and serum sample collection. Indirect Enzyme Linked Immunoassay was utilized for the collected 231 samples for serologic evidence of influenza A. Of the total 231 samples tested, 11 were positive for Influenza virus A with an overall sero-prevalence of (4.76%; Cl95%: 2.68-8.324) Kavre district had highest (5.88%; Cl95%: 2.539-13.04) sero-prevalence, followed by Bhaktapur (5.13%; Cl95%: 2.012-12.46) and Banke (2.94%; Cl95%; 0.8104-10.1) with no significant difference (p=0.685). Rearing swine along with poultry was the most significant risk factor (p=0.03); all positive cases were from the farms that adopted integrated farming system with little to no bio-security measures, especially poultry and swine. Present finding depicts that Influenza A is prevalent in pig farms of Kavre, Banke and Bhaktapur. Further research is needed to sub-type the influenza virus and also determine the effect of commercial poultry and migratory birds on the outbreak of influenza A in swine.  Int. J. Appl. Sci. Biotechnol. Vol 6(2): 122-126


2009 ◽  
Vol 83 (13) ◽  
pp. 6849-6862 ◽  
Author(s):  
Kester Haye ◽  
Svetlana Burmakina ◽  
Thomas Moran ◽  
Adolfo García-Sastre ◽  
Ana Fernandez-Sesma

ABSTRACT The NS1 protein of the influenza A virus is a potent virulence factor that inhibits type I interferon (IFN) synthesis, allowing the virus to overcome host defenses and replicate efficiently. However, limited studies have been conducted on NS1 function using human virus strains and primary human cells. We used NS1 truncated mutant influenza viruses derived from the human isolate influenza A/TX/91 (TX WT, where WT is wild type) to study the functions of NS1 in infected primary cells. Infection of primary differentiated human tracheo-bronchial epithelial cells with an NS1 truncated mutant demonstrated limited viral replication and enhanced type I IFN induction. Additionally, human dendritic cells (DCs) infected with human NS1 mutant viruses showed higher levels of activation and stimulated naïve T-cells better than TX WT virus-infected DCs. We also compared infections of DCs with TX WT and our previously characterized laboratory strain A/PR/8/34 (PR8) and its NS1 knockout strain, deltaNS1. TX WT-infected DCs displayed higher viral replication than PR8 but had decreased antiviral gene expression at late time points and reduced naïve T-cell stimulation compared to PR8 infections, suggesting an augmented inhibition of IFN production and human DC activation. Our findings show that human-derived influenza A viruses have a high capacity to inhibit the antiviral state in a human system, and here we have evaluated the possible mechanism of this inhibition. Lastly, C-terminal truncations in the NS1 protein of human influenza virus are sufficient to make the virus attenuated and more immunogenic, supporting its use as a live attenuated influenza vaccine in humans.


2008 ◽  
Vol 82 (7) ◽  
pp. 3769-3774 ◽  
Author(s):  
Michael Worobey

ABSTRACT Zhang et al. (G. Zhang, D. Shoham, D. Gilichinsky, S. Davydov, J. D. Castello, and S. O. Rogers, J. Virol. 80:12229-12235, 2006) have claimed to have recovered influenza A virus RNA from Siberian lake ice, postulating that ice might represent an important abiotic reservoir for the persistence and reemergence of this medically important pathogen. A rigorous phylogenetic analysis of these influenza A virus hemagglutinin gene sequences, however, indicates that they originated from a laboratory reference strain derived from the earliest human influenza A virus isolate, WS/33. Contrary to Zhang et al.'s assertions that the Siberian “ice viruses” are most closely related either to avian influenza virus or to human influenza virus strains from Asia from the 1960s (Zhang et al., J. Virol. 81:2538 [erratum], 2007), they are clearly contaminants from the WS/33 positive control used in their laboratory. There is thus no credible evidence that environmental ice acts as a biologically relevant reservoir for influenza viruses. Several additional cases with findings that seem at odds with the biology of influenza virus, including modern-looking avian influenza virus RNA sequences from an archival goose specimen collected in 1917 (T. G. Fanning, R. D. Slemons, A. H. Reid, T. A. Janczewski, J. Dean, and J. K. Taubenberger, J. Virol. 76:7860-7862, 2002), can also be explained by laboratory contamination or other experimental errors. Many putative examples of evolutionary stasis in influenza A virus appear to be due to laboratory artifacts.


2006 ◽  
Vol 27 (4) ◽  
pp. 177
Author(s):  
Graeme Laver

Following the isolation of the first human influenza virus in 1933, there have been two Type A influenza pandemics. One was the Asian influenza pandemic in 1957, when an H2N2 virus replaced the H1N1 viruses then circulating, and the other was in 1968 when the Hong Kong H3N2 virus replaced the H2N2 viruses. The H1N1 virus that re-emerged in 1977 did cause a worldwide epidemic (or pandemic) but this virus is not considered by many people to be a true ?pandemic? virus.


Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 186
Author(s):  
Sun-Jung Kim ◽  
Pan Kee Bae ◽  
Yong-Beom Shin

We report a colorimetric assay to detect influenza A virus using sialyllactose-levan-conjugated gold nanoparticles (AuNPs). We successfully conjugated 2, 3- and 2, 6-sialyllactose to levan and synthesized sialyllactose-levan-conjugated AuNPs. Each sialyllactose-conjugated levan specifically interacted with a recognizable lectin. Synthesized sialyllactose-conjugated levan acted as reducing and coating agents during the formation of AuNPs. Human influenza A virus specifically bound to 2, 6-sialyllactose-levan-conjugated AuNPs. Moreover, 2, 6-sialyllactose-conjugated levan AuNPs rapidly changed color from red to blue after incubation with human influenza virus. For detecting avian influenza virus, 2, 3-sialyllactose-levan-conjugated AuNPs were more effective than 2, 6-sialyllactose-levan-conjugated AuNPs. Therefore, the efficient targeting and diagnosis of influenza virus according to origin was possible. The deployment of sialyllactose-levan-conjugated particles for the detection of influenza virus is simple and quick. The limit of detection (L.O.D) of H1N1 influenza virus was 7.4 × 103 pfu using 2, 6-siallylactose-levan-conjugated AuNPs and H5N2 influenza virus was 4.2 × 103 pfu using 2, 3-siallylactose-levan- conjugated AuNPs.


2021 ◽  
Vol 49 (1) ◽  
pp. 030006052098283
Author(s):  
Cheng Zhang ◽  
Huan Cui ◽  
Zhongyi Wang ◽  
Shishan Dong ◽  
Chunmao Zhang ◽  
...  

Objective Influenza season occurs every year in China, but its presentation was unusual in the period from December 2017 to early 2018. During this period, influenza activity was increasing across the country and was much greater than during the same period in previous years, with great harm to people’s health. Methods In this study, we isolated two human influenza virus strains—A/Hebei/F076/2018(H1N1) and B/Hebei/16275B/2018—from patients with severe influenza in Hebei, China, during the flu season in January 2018, and explored their genetic characteristics, pathogenicity, and transmissibility. Results A/Hebei/F076/2018(H1N1) belongs to the human-like H1N1 influenza virus lineage, whereas B/Hebei/16275B/2018 belongs to the Victoria lineage and is closely related to the World Health Organization reference strain B/Brisbane/60/2008. Pathogenicity tests revealed that A/Hebei/F076/2018(H1N1) replicated much more strongly in mice, with mice exhibiting 40% mortality, whereas B/Hebei/16275B/2018 was not lethal. Both viruses could be transmitted through direct contact and by the aerosol route between guinea pigs, but the H1N1 strain exhibited higher airborne transmissibility. Conclusions These results may contribute to the monitoring of influenza mutation and the prevention of an influenza outbreak.


Sign in / Sign up

Export Citation Format

Share Document