scholarly journals Neonatal derived mesenchymal stem cell mesotherapy in androgenetic alopecia: a retrospective observational study and review of literature

Author(s):  
Leelavathy Budamakuntla ◽  
Eswari Loganathan ◽  
Shwetha Suryanarayana ◽  
Aparna Dongre

<p class="abstract"><strong>Background:</strong> Androgenetic alopecia has been a stressful condition for the patients and treating dermatologists alike. With the advent of stem cell therapy in various diseases, and lot of controversies and ethical issues related to it, mesenchymal stem cells MSC have passed the acid test successfully, though with many challenges. Since the stem cells in the hair follicle bulge and the dermal papilla play an important role in hair cycle and growth, introducing an external source of neonatal mesenchymal stem cells seems to be a possibility in the treatment of AGA. Aims: To know the benefits and safety of stem cell treatment in patients who underwent mesotherapy with neonatal MSC in order to establish the safety and efficacy in the treatment of AGA.</p><p class="abstract"><strong>Methods:</strong> We collected data of 40 patients treated with mesoinjections of commercially prepared neonatal MSC, with AGA of grade 2 to 7. Before and after photographs, Patient (PtGA) and Physician (PGA) Global assessment scores were used to evaluate the treatment response.</p><p class="abstract"><strong>Results:</strong> We found that 70% of the patients showed a mild response and 25% of them showed a moderate improvement in the hair growth and reduction in hair loss after 4 sittings of monthly duration. One subject showed an improvement of 72%. Patients had 6 month follow up. No major adverse events were observed.</p><p class="abstract"><strong>Conclusions:</strong> Since this is an observational study, large randomized controlled studies, with longer follow ups is recommended to make MSC therapy a novel treatment option for AGA. </p><strong>Keywords: </strong>Mesenchymal stem cells, Mesotherapy, Androgenetic alopecia

Blood ◽  
2012 ◽  
Vol 120 (15) ◽  
pp. 3142-3151 ◽  
Author(s):  
Junji Xu ◽  
Dandan Wang ◽  
Dayong Liu ◽  
Zhipeng Fan ◽  
Huayong Zhang ◽  
...  

Abstract Sjögren syndrome (SS) is a systemic autoimmune disease characterized by dry mouth and eyes, and the cellular and molecular mechanisms for its pathogenesis are complex. Here we reveal, for the first time, that bone marrow mesenchymal stem cells in SS-like NOD/Ltj mice and human patients were defective in immunoregulatory functions. Importantly, treatment with mesenchymal stem cells (MSCs) suppressed autoimmunity and restored salivary gland secretory function in both mouse models and SS patients. MSC treatment directed T cells toward Treg and Th2, while suppressing Th17 and Tfh responses, and alleviated disease symptoms. Infused MSCs migrated toward the inflammatory regions in a stromal cell–derived factor-1–dependent manner, as neutralization of stromal cell–derived factor-1 ligand CXCR4 abolished the effectiveness of bone marrow mesenchymal stem cell treatment. Collectively, our study suggests that immunologic regulatory functions of MSCs play an important role in SS pathogenesis, and allogeneic MSC treatment may provide a novel, effective, and safe therapy for patients with SS. This study was registered at www.clinicaltrials.gov as NCT00953485.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oldouz Shareghi-oskoue ◽  
Leili Aghebati-Maleki ◽  
Mehdi Yousefi

AbstractAs one of the problems and diseases for women before 40 years, premature ovarian failure (POF) could be characterized by amenorrhea, low estrogen levels, infertility, high gonadotropin levels, and lack of mature follicles. Causes of the disease involve some genetic disorders, autoimmunity diseases, and environmental factors. Various approaches have been employed to treat POF, however with limited success. Today, stem cells are used to treat POF, since they have the potential to self-repair and regenerate, and are effective in treating ovarian failure and infertility. As mesenchymal stem cell (MSC) could simultaneously activate several mechanisms, many researchers consider MSC transplantation to be the best and most effective approach in cell therapy. A good source for mesenchymal stem cells is human umbilical cord (HUCMSC). Animal models with cyclophosphamide are required for stem cell treatment and performance of HUCMSC transplantation. Stem cell therapy could indicate the levels of ovarian markers and follicle-stimulating hormone receptor. It also increases ovarian weight, plasma E2 levels, and the amount of standard follicles. Herein, the causes of POF, effective treatment strategies, and the effect of HUCMSC transplantation for the treatment of premature ovarian failure are reviewed. Many studies have been conducted in this field, and the results have shown that stem cell treatment is an effective approach to treat infertility.


2019 ◽  
Vol 14 (8) ◽  
pp. 644-653 ◽  
Author(s):  
Jinxuan Ren ◽  
Na Liu ◽  
Na Sun ◽  
Kehan Zhang ◽  
Lina Yu

Chronic pain is a common condition that seriously affects the quality of human life with variable etiology and complicated symptoms; people who suffer from chronic pain may experience anxiety, depression, insomnia, and other harmful emotions. Currently, chronic pain treatments are nonsteroidal anti-inflammatory drugs and opioids; these drugs are demonstrated to be insufficient and cause severe side effects. Therefore, research into new therapeutic strategies for chronic pain is a top priority. In recent years, stem cell transplantation has been demonstrated to be a potent alternative for the treatment of chronic pain. Mesenchymal stem cells (MSCs), a type of pluripotent stem cell, exhibit multi-directional differentiation, promotion of stem cell implantation, and immune regulation; they have also been shown to exert analgesic effects in several chronic pain models. Exosomes produced by MSCs have been demonstrated to relieve painful symptoms with fewer side effects. In this review, we summarize the therapeutic use of MSCs in various chronic pain studies. We also discuss ways to enhance the treatment effect of MSCs. We predict in the future, cell-free therapies for chronic pain will develop from exosomes secreted by MSCs.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 792
Author(s):  
Xixiang Gao ◽  
Mingjie Gao ◽  
Jolanta Gorecka ◽  
John Langford ◽  
Jia Liu ◽  
...  

Induced pluripotent stem cells (iPSC) represent an innovative, somatic cell-derived, easily obtained and renewable stem cell source without considerable ethical issues. iPSC and their derived cells may have enhanced therapeutic and translational potential compared with other stem cells. We previously showed that human iPSC-derived smooth muscle cells (hiPSC-SMC) promote angiogenesis and wound healing. Accordingly, we hypothesized that hiPSC-SMC may be a novel treatment for human patients with chronic limb-threatening ischemia who have no standard options for therapy. We determined the angiogenic potential of hiPSC-SMC in a murine hindlimb ischemia model. hiPSC-SMC were injected intramuscularly into nude mice after creation of hindlimb ischemia. Functional outcomes and perfusion were measured using standardized scores, laser Doppler imaging, microCT, histology and immunofluorescence. Functional outcomes and blood flow were improved in hiPSC-SMC-treated mice compared with controls (Tarlov score, p < 0.05; Faber score, p < 0.05; flow, p = 0.054). hiPSC-SMC-treated mice showed fewer gastrocnemius fibers (p < 0.0001), increased fiber area (p < 0.0001), and enhanced capillary density (p < 0.01); microCT showed more arterioles (<96 μm). hiPSC-SMC treatment was associated with fewer numbers of macrophages, decreased numbers of M1-type (p < 0.05) and increased numbers of M2-type macrophages (p < 0.0001). Vascular endothelial growth factor (VEGF) expression in ischemic limbs was significantly elevated with hiPSC-SMC treatment (p < 0.05), and inhibition of VEGFR-2 with SU5416 was associated with fewer capillaries in hiPSC-SMC-treated limbs (p < 0.0001). hiPSC-SMC promote VEGF-mediated angiogenesis, leading to improved hindlimb ischemia. Stem cell therapy using iPSC-derived cells may represent a novel and potentially translatable therapy for limb-threatening ischemia.


2021 ◽  
pp. 036354652098681
Author(s):  
Monketh Jaibaji ◽  
Rawan Jaibaji ◽  
Andrea Volpin

Background: Osteochondral lesions are a common clinical problem and their management has been historically challenging. Mesenchymal stem cells have the potential to differentiate into chondrocytes and thus restore hyaline cartilage to the defect, theoretically improving clincal outcomes in these patients. They can also be harvested with minimal donor site morbidity. Purpose: To assess the clinical and functional outcomes of mesenchymal stem cell implantation to treat isolated osteochondral defects of the knee. A secondary purpose is to assess the quality of the current available evidence as well as the radiological and histological outcomes. We also reviewed the cellular preparation and operative techniques for implantation. Study Design: Systematic review. Methods: A comprehensive literature search of 4 databases was carried out: CINAHL, Embase, MEDLINE, and PubMed. We searched for clinical studies reporting the outcomes on a minimum of 5 patients with at least 12 months of follow-up. Clinical, radiological, and histological outcomes were recorded. We also recorded demographics, stem cell source, culture technique, and operative technique. Methodological quality of each study was assessed using the modified Coleman methodology score, and risk of bias for the randomized controlled studies was assessed using the Cochrane Collaboration tool. Results: Seventeen studies were found, encompassing 367 patients. The mean patient age was 35.1 years. Bone marrow was the most common source of stem cells utilized. Mesenchymal stem cell therapy consistently demonstrated good short- to medium-term outcomes in the studies reviewed with no serious adverse events being recorded. There was significant heterogeneity in cell harvesting and preparation as well as in the reporting of outcomes. Conclusion: Mesenchymal stem cells demonstrated a clinically relevant improvement in outcomes in patients with osteochondral defects of the knee. More research is needed to establish an optimal treatment protocol, long-term outcomes, and superiority over other therapies. Registration: CRD42020179391 (PROSPERO).


RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18685-18692
Author(s):  
Hiroki Masuda ◽  
Yoshinori Arisaka ◽  
Masahiro Hakariya ◽  
Takanori Iwata ◽  
Tetsuya Yoda ◽  
...  

Molecular mobility of polyrotaxane surfaces promoted mineralization in a co-culture system of mesenchymal stem cells and endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document