scholarly journals Combined Fluorescence and Bright Field Imaging via a Single CMOS Detector Without Filters to Improve on Patient Safety during Endoscopic Procedures – An Experimental Study Analysing the Output of both LASER and LED Near Infrared Sources on In Vitro Samples

2020 ◽  
Vol 6 (4) ◽  
pp. 040303
Author(s):  
Angharad Curtis ◽  
Kang Li ◽  
Mohammed Ali Roula
2013 ◽  
Vol 18 (11) ◽  
pp. 1 ◽  
Author(s):  
Maya Shalev Aviv ◽  
Mattia Pesce ◽  
Sharada Tilve ◽  
Evelina Chieregatti ◽  
Zeev Zalevsky ◽  
...  

Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


1990 ◽  
Vol 123 ◽  
pp. 215-222
Author(s):  
Toshio Matsumoto

AbstractIRTS is a small cryogenically cooled telescope onboard the small space platform SFU (Space Flyer Unit). SFU will be launched with the new Japanese HII rocket on January 1994 and retrieved by the space shuttle.The IRTS telescope has an aperture of only 15 cm diameter, but is optimized to observe diffuse extended infrared sources. Four focal plane instruments are being developed under collaboration between Japan and the U.S.A. IRTS covers a wide wavelength range from near-infrared to submillimeter region, and has a capability for the spectroscopic measurement. Due to newly developed detectors, the sky will be surveyed with very high sensitivities. IRTS will provide valuable data on cosmology, galactic structure, cosmic dust, etc.


Sign in / Sign up

Export Citation Format

Share Document