scholarly journals A Tangy Twist Review on Hog-Plum: Spondias pinnata (L.f.) Kurz

2021 ◽  
Vol 21 (1) ◽  
pp. 1
Author(s):  
Sumanta Mondal ◽  
Kausik Bhar ◽  
Naresh Panigrahi ◽  
Prasenjit Mondal ◽  
Sridhar Nayak ◽  
...  

<em>Spondias pinnata</em> (L.f.) Kurz., belongs to the Anacardiaceae family, generally referred to as Indian Hog plum, a deciduous, glabrous tree with a healthy fruit to eat. Hog plum is a mild deciduous tree plant of high nutritional value, stubby calories and abundant in vegetable proteins, zinc, chitin, starch, vitamins and minerals. Traditional use of various parts of <em>S. pinnata</em> includes diarrhea, dysentery, stomach troubles, hyperacidity, wounds, sprain, rheumatism, gonorrhoea, tuberculosis, aphrodisiac, arrow poison antidote, dyspepsia, dysentery, ring worms, abscess painful joints, refrigerant, tonic, antiseptic, astringent, mental disorders, tuberculosis, vomiting and many more. A number of pharmacological activities were reported from several extracts of <em>S. pinnata</em> and its parts that include hypoglycemic, anti-cancer, ulcer-protective, antidiarrhoeal, anti-microbial, hepatoprotective, thrombolytic, anti-inflammatory, antiarthritic, analgesic, antipyretic, antihypertensive, anthelmintic, diuretic and laxative, anti-tuberculosis, cytotoxic, antioxidant, anti-hyperlipidemic, ischemia reperfusion injury and preconditioning of heart, anxiolytic, reduce side effects of chemotherapy, ameliorating, platelet aggregation inhibitory activity and acute and sub-chronic toxicity. A few phytochemicals were detailed on this plant. The chemical components of <em>S. pinnata</em> include different amino acids, carbohydrates, terpenoids, flavonoids, polysaccharides, steroids and so on. Various solvent extract and their gas chromatography-mass spectrometry analysis have confirmed the structures of a number of important phytoconstituents. Hence this review can be a good reference for researchers who would undertake further investigation about <em>S. pinnata</em>.

Author(s):  
Wan Mohd Nuzul Hakimi Wan Salleh ◽  
Muhammad Helmi Nadri ◽  
Shamsul Khamis

This study was aimed to investigate the chemica l compositions and lipoxygenase inhibitory activity of the essential oil from Alstonia angustiloba growing in Malaysia. The essential oils were obtained by hydrodistillation and fully characterized by gas chromatography and gas chromatography-mass spectrometry. Analysis of the A. angustiloba essential oil resulted in the identification of twenty-five chemical components, attributed 90.8% of the total oil. The most abundant components of A. angustiloba oil were linalool (21.2%), 1,8-cineole (16.8%), α-terpineol (9.5%), terpinene-4-ol (8.5%), β-caryophyllene (6.2%), and caryophyllene oxide (5.2%). The essential oil displayed moderate activity towards lipoxygenase activity with IC50 value of 45.8 μg/mL.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1591
Author(s):  
Dodi Nandika ◽  
Lina Karlinasari ◽  
Arinana Arinana ◽  
Irmanida Batubara ◽  
Putri Sari Sitanggang ◽  
...  

Recently, the architectural and physical properties of the fungus comb from subterranean termite Macrotermes gilvus Hagen (Isoptera: Termitidae) mounds had been studied and it is important to determine its chemical profile as well as to evaluate its anti-staining-fungi activity. The results showed that fungus comb of M. gilvus has a high crude ash (30.57%), fiber (25.46%), starch (7.76%), protein (5.80%, 5.53% amino acid), acid-insoluble ash (3.45%), and fat (0.73%). It also contained phenol hydroquinone, steroids, terpenoids, and saponin compounds. Seventeen amino acids were identified via high-performance liquid chromatography analysis, of which arginine, leucine, glutamate, and aspartic acid were the majority. According to gas chromatography-mass spectrometry analysis, the n-hexane extract consists of several types of fatty acid derivatives. Meanwhile, the ethyl acetate (EtOAc) extracts were primarily phenol groups with 1,2,3-propanetriol (glycerol) at the highest relative concentration. Four fungus-comb extracts (n-hexane, EtOAc, MeOH, and water) inhibited the Aspergillus foetidus fungus, with inhibition rates ranging from 24.17% to 100% and EtOAc extract as the most active extract. It appears that EtOAc extracts from the M. gilvus fungus comb can be considered an active ingredient source of novel organic fungicide in preventing wood-staining fungi attacks on susceptible wood.


1991 ◽  
Vol 26 (1) ◽  
pp. 1-16 ◽  
Author(s):  
T.P. Murphy ◽  
H. Brouwer ◽  
M.E. Fox ◽  
E. Nagy

Abstract Eighty-one sediment cores were collected to determine the extent of coal tar contamination in a toxic area of Hamilton Harbour. Over 800 samples were analyzed by a UV spectrophotometric technique that was standardized with gas chromatography/mass spectrometry analysis. The coal tar distribution was variable. The highest concentrations were near the Stelco outfalls and the Hamilton-Wentworth combined sewer outfalls. The total concentration of the 16 polynuclear aromatic hydrocarbons (PAHs) in 48,300 m3 of near-surface sediments exceeded 200 µg/g.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jie Tang ◽  
Dan Lei ◽  
Min Wu ◽  
Qiong Hu ◽  
Qing Zhang

Abstract Fenvalerate is a pyrethroid insecticide with rapid action, strong targeting, broad spectrum, and high efficiency. However, continued use of fenvalerate has resulted in its widespread presence as a pollutant in surface streams and soils, causing serious environmental pollution. Pesticide residues in the soil are closely related to food safety, yet little is known regarding the kinetics and metabolic behaviors of fenvalerate. In this study, a fenvalerate-degrading microbial strain, CD-9, isolated from factory sludge, was identified as Citrobacter freundii based on morphological, physio-biochemical, and 16S rRNA sequence analysis. Response surface methodology analysis showed that the optimum conditions for fenvalerate degradation by CD-9 were pH 6.3, substrate concentration 77 mg/L, and inoculum amount 6% (v/v). Under these conditions, approximately 88% of fenvalerate present was degraded within 72 h of culture. Based on high-performance liquid chromatography and gas chromatography-mass spectrometry analysis, ten metabolites were confirmed after the degradation of fenvalerate by strain CD-9. Among them, o-phthalaldehyde is a new metabolite for fenvalerate degradation. Based on the identified metabolites, a possible degradation pathway of fenvalerate by C. freundii CD-9 was proposed. Furthermore, the enzyme localization method was used to study CD-9 bacteria and determine that its degrading enzyme is an intracellular enzyme. The degradation rate of fenvalerate by a crude enzyme solution for over 30 min was 73.87%. These results showed that strain CD-9 may be a suitable organism to eliminate environmental pollution by pyrethroid insecticides and provide a future reference for the preparation of microbial degradation agents and environmental remediation.


2021 ◽  
pp. 030098582110021
Author(s):  
Yuta Takaichi ◽  
James K. Chambers ◽  
Moeko Shiroma-Kohyama ◽  
Makoto Haritani ◽  
Yumi Une ◽  
...  

Canavan disease is an autosomal recessive leukodystrophy caused by mutations in the gene encoding aspartoacylase (ASPA), which hydrolyses N-acetylaspartate (NAA) to acetate and aspartate. A similar feline neurodegenerative disease associated with a mutation in the ASPA gene is reported herein. Comprehensive clinical, genetic, and pathological analyses were performed on 4 affected cats. Gait disturbance and head tremors initially appeared at 1 to 19 months of age. These cats eventually exhibited dysstasia and seizures and died at 7 to 53 months of age. Magnetic resonance imaging of the brain revealed diffuse symmetrical intensity change of the cerebral cortex, brainstem, and cerebellum. Gas chromatography–mass spectrometry analysis of urine showed significant excretion of NAA. Genetic analysis of the 4 affected cats identified a missense mutation (c.859G>C) in exon 6 of the ASPA gene, which was not detected in 4 neurologically intact cats examined as controls. Postmortem analysis revealed vacuolar changes predominantly distributed in the gray matter of the cerebrum and brain stem as well as in the cerebellar Purkinje cell layer. Immunohistochemically, these vacuoles were surrounded by neurofilaments and sometimes contained MBP- and Olig2-positive cells. Ultrastructurally, a large number of intracytoplasmic vacuoles containing mitochondria and electron-dense granules were detected in the cerebral cortex. All 4 cats were diagnosed as spongy encephalopathy with a mutation in the ASPA gene, a syndrome analogous to human Canavan disease. The histopathological findings suggest that feline ASPA deficiency induces intracytoplasmic edema in neurons and oligodendrocytes, resulting in spongy degeneration of the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document