scholarly journals New Thermo-Sensitive Hydrogel Based on Copolymer of 2-hydroxyethyl Acrylate and Ethyl Acrylate

2017 ◽  
Vol 19 (1) ◽  
pp. 47
Author(s):  
R.K. Rakhmetullayeva ◽  
A.N. Azhkeyeva ◽  
G.Zh. Yeligbayeva ◽  
Ye.M. Shaikhutdynov ◽  
G.A. Mun ◽  
...  

In this work firstly the thermo-sensitive polymer hydrogels were obtained by three-dimensional radical copolymerization of water-soluble HEA and hydrophobic monomer ethyl acrylate (EA) in the presence of crosslinking agent N,N’-methylenebisacrylamide (BAA). The hydrogels with certain copolymer compositions showed thermo-sensitive behavior in aqueous solutions. The regularity of complex formation of cross-linked copolymer HEA-EA with anionic and cationic surface-active substances have been studied. The swelling behavior of the hydrogels in cetylpyridinium bromide aqueous solutions was studied. Increased swelling of the hydrogels was observed in the surfactant solutions. The increased swelling was more prominent for the hydrogels with a higher content of the hydrophobic moiety in the copolymer composition and with the higher surfactant concentration. The reason for the observed phenomenon is discussed.

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 327 ◽  
Author(s):  
Maho Ohshio ◽  
Kazuhiko Ishihara ◽  
Shin-ichi Yusa

Water-soluble and amphiphilic random copolymers (P(MPC/DMAx)) composed of hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) and hydrophobic n-dodecyl methacrylate (DMA) were prepared via reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization. The compositions of DMA unit (x) in the copolymer were in the range of 0 to 38 unit mol %. The degree of polymerization of P(MPC/DMAx) was adjusted to about 200. Since the monomer reactivity ratios of MPC and DMA are 1.01 and 1.00, respectively, ideal free radical copolymerization occurred. In aqueous solutions, interpolymer aggregation occurred due to the hydrophobic pendant n-dodecyl groups. The aggregation number (Nagg) increased with an increasing x. The mobilities of the DMA and MPC pendant groups in aqueous solutions were restricted, as confirmed by 1H NMR relaxation time measurements, because a part of the MPC units were trapped in the hydrophobic microdomain formed from the pendant n-dodecyl groups. The polarity of the hydrophobic microdomain formed from P(MPC/DMA38) in water was similar to that of ethyl acetate according to fluorescence probe experiments. No specific interactions were found in water between P(MPC/DMAx) and bovine serum albumin because the surface of the interpolymer aggregates contained only hydrophilic MPC units.


2021 ◽  
Author(s):  
Ikuo Yamamoto ◽  
Shinichi Minami ◽  
Tsuyoshi Ando ◽  
Hiroharu Ajiro

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1760
Author(s):  
Rose K. Baimuratova ◽  
Gulzhian I. Dzhardimalieva ◽  
Evgeniy V. Vaganov ◽  
Valentina A. Lesnichaya ◽  
Gulsara D. Kugabaeva ◽  
...  

We report here our successful attempt to obtain self-healing supramolecular hydrogels with new metal-containing monomers (MCMs) with pendent 4-phenyl-2,2′:6′,2″-terpyridine metal complexes as reversible moieties by free radical copolymerization of MCMs with vinyl monomers, such as acrylic acid and acrylamide. The resulting metal-polymer hydrogels demonstrate a developed system of hydrogen, coordination and electron-complementary π–π stacking interactions, which play a critical role in achieving self-healing. Kinetic data show that the addition of a third metal-containing comonomer to the system decreases the initial polymerization rate, which is due to the specific effect of the metal group located in close proximity of the active center on the growth of radicals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zehua Zheng ◽  
Kazuhiro Kawakami ◽  
Dingkun Zhang ◽  
Lumi Negishi ◽  
Mohamed Abomosallam ◽  
...  

AbstractThe Pacific oyster, Crassostrea gigas, is a traditional food worldwide. The soft body of the oyster can easily accumulate heavy metals such as cadmium (Cd). To clarify the molecular mechanism of Cd accumulation in the viscera of C. gigas, we identified Cd-binding proteins. 5,10,15,20-Tetraphenyl-21H,23H-porphinetetrasulfonic acid, disulfuric acid, tetrahydrate, and Cd-binding competition experiments using immobilized metal ion affinity chromatography revealed the binding of water-soluble high molecular weight proteins to Cd, including C. gigas protein disulfide isomerase (cgPDI). Liquid chromatography–tandem mass spectrometry (LC–MS/MS) analyses revealed two CGHC motifs in cgPDI. The binding between Cd and rcgPDI was confirmed through a Cd-binding experiment using the TPPS method. Isothermal titration calorimetry (ITC) revealed the binding of two Cd ions to one molecule of rcgPDI. Circular dichroism (CD) spectrum and tryptophan fluorescence analyses demonstrated that the rcgPDI bound to Cd. The binding markedly changed the two-dimensional or three-dimensional structures. The activity of rcgPDI measured by a PDI Activity Assay Kit was more affected by the addition of Cd than by human PDI. Immunological analyses indicated that C. gigas contained cgPDI at a concentration of 1.0 nmol/g (viscera wet weight). The combination of ITC and quantification results revealed that Cd-binding to cgPDI accounted for 20% of the total bound Cd in the visceral mass. The findings provide new insights into the defense mechanisms of invertebrates against Cd.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 536
Author(s):  
Shaojian He ◽  
Zhongrui Lu ◽  
Wenxu Dai ◽  
Kangning Yang ◽  
Yang Xue ◽  
...  

Phosphotungstic acid (HPW)-filled composite proton exchange membranes possess high proton conductivity under low relative humidity (RH). However, the leaching of HPW limits their wide application. Herein, we propose a novel approach for anchoring water soluble phosphotungstic acid (HPW) by polydopamine (PDA) coated graphene oxide and halloysite nanotubes (DGO and DHNTs) in order to construct hybrid three-dimensional proton transport networks in a sulfonated poly(ether ether ketone) (SPEEK) membrane. The introduction of PDA on the surfaces of the hybrid fillers could provide hydroxyl groups and secondary amine groups to anchor HPW, resulting in the uniform dispersion of HPW in the SPEEK matrix. The SPEEK/DGO/DHNTs/HPW (90/5/5/60) composite membrane exhibited higher water uptake and much better conductivity than the SPEEK membrane at low relative humidity. The best conductivity reached wass 0.062 S cm−1 for the composite membrane, which is quite stable during the water immersion test.


1931 ◽  
Vol 6 (1) ◽  
pp. 1-11 ◽  
Author(s):  
J. F. LOGAN

As a contribution to the chemistry of muscle tissue, the solubility of the protein of haddock muscle in aqueous solutions of sodium chloride and neutral potassium phosphate, respectively, was determined. The results are expressed in tabular form and graphically in the form of solubility curves. A water-soluble protein and also a salt-soluble protein were isolated from dialyzed haddock muscle by extraction methods. These proteins were obtained in a comparatively pure condition by precipitation from solution in the region of their isoelectric points.


1998 ◽  
Vol 41 (6) ◽  
pp. 687-694 ◽  
Author(s):  
G. del C. Pizarro ◽  
O. G. Marambio ◽  
B. L. Rivas ◽  
K. E. Geckeler

2020 ◽  
Vol 9 (1) ◽  
pp. 1118-1136
Author(s):  
Zhenjia Huang ◽  
Gary Chi-Pong Tsui ◽  
Yu Deng ◽  
Chak-Yin Tang

AbstractMicro/nano-fabrication technology via two-photon polymerization (TPP) nanolithography is a powerful and useful manufacturing tool that is capable of generating two dimensional (2D) to three dimensional (3D) arbitrary micro/nano-structures of various materials with a high spatial resolution. This technology has received tremendous interest in cell and tissue engineering and medical microdevices because of its remarkable fabrication capability for sophisticated structures from macro- to nano-scale, which are difficult to be achieved by traditional methods with limited microarchitecture controllability. To fabricate precisely designed 3D micro/nano-structures for biomedical applications via TPP nanolithography, the use of photoinitiators (PIs) and photoresists needs to be considered comprehensively and systematically. In this review, widely used commercially available PIs are first discussed, followed by elucidating synthesis strategies of water-soluble initiators for biomedical applications. In addition to the conventional photoresists, the distinctive properties of customized stimulus-responsive photoresists are discussed. Finally, current limitations and challenges in the material and fabrication aspects and an outlook for future prospects of TPP for biomedical applications based on different biocompatible photosensitive composites are discussed comprehensively. In all, this review provides a basic understanding of TPP technology and important roles of PIs and photoresists for fabricating high-precision stimulus-responsive micro/nano-structures for a wide range of biomedical applications.


1965 ◽  
Vol 43 (1) ◽  
pp. 30-39 ◽  
Author(s):  
C. T. Bishop ◽  
M. B. Perry ◽  
F. Blank ◽  
F. P. Cooper

A group of polysaccharides, called galactomannans I, were precipitated as their insoluble copper complexes from aqueous solutions of the crude polysaccharides obtained from each of the organisms designated in the title. The five galactomannans I were homogeneous under conditions of electrophoresis and ultracentrifugation and had high positive specific rotations. The major constituent monosaccharide was D-mannose; amounts of D-galactose ranged from nil for the polysaccharide from T. rubrum to 13% for that from T. schönleinii. Methylation and hydrolysis of the five galactomannans I yielded varying amounts of the following: 2,3,5,6-tetra-O-methyl-D-galactose (not present in the products from T. rubrum), 2,3,4,6-tetra-O-methyl-D-mannose, 2,3,4-tri-O-methyl-D-mannose, 2,4,6-tri-O-methyl-D-mannose, 3,4-di-O-methyl-D-mannose, and 3,5-di-O-methyl-D-mannose. Periodate oxidation results agreed with the methylation studies. The gross structural features of each galactomannan I appear to be the same, namely, a basic chain of 1 → 6 linked α-D-mannopyranose units for approximately every 22 of which there is a 1 → 3 linked α-D-mannopyranose residue. Branch points occur along the 1 → 6 linked chain at the C2 positions of the D-mannopyranose units and once in every 45 units at the C2 position of a 1 → 6 linked D-mannofuranose residue. The D-galactose in the polysaccharides is present exclusively as non-reducing terminal furanose units; non-reducing terminal units of D-mannopyranose are also present. The variations in the identities and relative amounts of the non-reducing terminal units were the only apparent differences in the gross structural features within this group of polysaccharides.


Sign in / Sign up

Export Citation Format

Share Document