Synthesis of Superhydrophobic Carbon Surface during Combustion Propane

2011 ◽  
Vol 14 (1) ◽  
pp. 19 ◽  
Author(s):  
Z.A. Mansurov ◽  
M. Nazhipkyzy ◽  
B.T. Lesbayev ◽  
N.G. Prikhodko ◽  
M. Auyelkhankyzy ◽  
...  

We synthesize and deposit carbon nanostructures through flame synthesis on silicon and nickel wafers at different nonpremixed flame locations to produce hydrophobic surfaces. The hydrophobicity is characterized through the contact angle for water droplets placed on the surface. The surface morphology of the nanoparticles is obtained from SEM images. The morphology and hydrohobicity of the nanostructured surfaces depends upon the deposition, which differs at various flame locations. We determine the optimum flame location for the synthesis and deposition of surface carbon nanostructures that lead to maximum hydrophobicity.

Author(s):  
Sonal Mazumder ◽  
Suvojit Ghosh ◽  
Joseph O. Falkinham ◽  
Ishwar K. Puri

Carbon nanostructures were synthesized and deposited through flame synthesis on stainless steel grids and foils, and on bare and ferrofluid-painted silicon wafers at different nonpremixed flame locations to produce hydrophobic surfaces. The hydrophobicity is characterized through the contact angle for water droplets placed on the surface. The surface morphology of the nanoparticles is obtained from high-resolution FESEM images. Following synthesis and deposition the adherence, activity, and stability of bacterial cells, antibodies, and enzymes on the carbon nanostructures can be studied.


Nanoscale ◽  
2017 ◽  
Vol 9 (46) ◽  
pp. 18240-18245 ◽  
Author(s):  
Chongqin Zhu ◽  
Yurui Gao ◽  
Yingying Huang ◽  
Hui Li ◽  
Sheng Meng ◽  
...  

The transition between the Cassie and Wenzel states can be controlled via precisely designed trapezoidal nanostructures on the surface, for which the base angle of the trapezoids and the intrinsic contact angle of the surface are two possible adjustable parameters.


Author(s):  
Claudya P. Arana ◽  
Ishwar K. Puri ◽  
Swarnendu Sen

Since prepared substrates offer an appropriate method for the selective production of uniform arrays of aligned CNTs and CNFs, it is important to illustrate the influence of different catalysts on the resulting nanostructures. This investigation characterizes the activity of three catalysts — iron in alloyed form as stainless steel, nickel, and platinum — on carbon nanostructure formation under identical conditions in an ethylene/air nonpremixed flame. We have synthesized well-aligned multi-walled CNTs (on Ni) and CNFs (on stainless steel). The third transition metal Pt produces CNF structures of a different kind and its activity has not been previously characterized in flames. The catalyst and gas-phase conditions leading to the formation of these different structures are discussed.


2020 ◽  
Vol 319 ◽  
pp. 10002
Author(s):  
Hindun Nofitri Da Conceicao Isya ◽  
Imelda Valadares Marcal ◽  
Ruth R. Aquino

In this study, polyvinylidene fluoride with an additive of nanozeolite (PVDF/NZ) membranes were prepared, characterized and evaluated. The concentrations of the nanozeolite incorporated into PVDF were varied from 0.25%, 0.50% and 0.75 % with N-methyl-2-pyrrolidone (NMP) as solvent and the corresponding effects of nanozeolite on the polymer matrix were investigated in terms of performance and properties. There are two methods in preparing the membranes, namely: Non-solvent Induced Phase Separation (NIPS) and electrospinning. The hydrophobicity of the membranes was characterized by contact angle, the surface morphology using Scanning Electron Microscopy (SEM), and the mechanical properties by Universal Testing Machine (UTM). The presence of organic and inorganic matter was investigated using Fourier-Transform Infrared (FTIR). The SEM images of both fabricated nanocomposite membranes showed that after the addition of nanozeolite particles into PVDF matrix has affected the surface morphology, flat-sheet resulted decreasing in porous and electrospun resulted less beads and increasing fiber diameter after adding an extra amount of nanozeolite. The chemical bond or molecular structure of flat-sheet and electrospun membranes obtained same functional groups, however the electrospun resulted a high absorption of alkanes. The contact angle of both nanocomposite fabricated membranes exhibited an increasing contact angle, yet the PVDF/0.75NZ of electrospun membrane obtained higher hydrophobic surface compared to others. The result of UTM showed that on flat-sheet, the tensile strength was obtained by pure PVDF membrane while the PVDF/0.25NZ of electrospun membrane was able to achieve an optimum tensile strength. In fact, the tensile strength via NIPS need to be improved.


2018 ◽  
Vol 25 (02) ◽  
pp. 1850052 ◽  
Author(s):  
GAO PINGPING ◽  
OUYANG CHUN ◽  
XIE ZHIYONG ◽  
TAO TAO

The Ni-P/TiN coating was used as bipolar plate by electroless plating on Ti. Surface morphology and phase structure of the coatings were characterized by SEM and XRD, respectively. Corrosion resistance of Ni-P and Ni-P/TiN coating was measured in the simulated solution of Proton exchange membrane fuel cells (PEMFCs). The interfacial contact resistance (ICR) was conducted by applied different forces. SEM images indicated that the particles of core–shell structure were formed on the surface of coating on Ti substrate. The core–shell structure was composed of TiN core and Ni-P electroless plating shell. Compared with Ni-P coatings, the Ni-P/TiN coating showed better corrosion resistance behaviors and low ICR (below 10[Formula: see text]m[Formula: see text][Formula: see text] cm[Formula: see text] under pressure of 200 N/cm[Formula: see text]. TiN particles and distribution of core–shell were in favor of the formation of coating and compact surface morphology. The good conductivity was attributed to the compact surface morphology of coating. The Ni-P/TiN coating showed excellent interfacial conductivity and good corrosion resistance at applied high potential in simulated solution of PEMFCs.


2012 ◽  
Vol 548 ◽  
pp. 101-104 ◽  
Author(s):  
W. Shao ◽  
D. Nabb ◽  
N. Renevier ◽  
I. Sherrington ◽  
J.K. Luo

Ni-carbon nanotubes nanocomposite coatings were obtained from a Watts bath containing uniformly dispersed carbon nanotubes (CNTs). The surface morphology was investigated by the SEM images of coatings. The mechanical property and corrosion resistance of the nanocomposite coatings were investigated. This study revealed these CNTs reinforced Ni nanocoatings have improved mechanical and corrosion property.


2011 ◽  
Vol 306-307 ◽  
pp. 25-30 ◽  
Author(s):  
Ping Luo ◽  
Zhan Yun Huang ◽  
Di Hu Chen

In this work, titanium oxide nanorod arrays were fabricated by using the hydrothermal method on fluorine-doped tin oxide (FTO) coated glass. The diameter of the nanorods could be controlled from 150 nm to 30 nm by changing the growth parameters. The surface morphology and the structure of the samples were characterized by SEM and XRD. The wetting properties were identified by contact angle measurement. Platelet attachment was investigated to evaluate the blood compatibility of the samples with different nanoscale topographies. Results show that the nanotopographical surfaces perform outstanding blood compatibility, and the adhering platelet decreased with the increasing diameter of the nanorods.


Langmuir ◽  
2011 ◽  
Vol 27 (19) ◽  
pp. 11747-11751 ◽  
Author(s):  
Qian Zhou ◽  
William D. Ristenpart ◽  
Pieter Stroeve

2018 ◽  
Vol 80 (3-2) ◽  
Author(s):  
Ngan T. B. Dang ◽  
Liza B. Patacsil ◽  
Aileen H. Orbecido ◽  
Ramon Christian P. Eusebio ◽  
Arnel B. Beltran

Water resources are very important to sustain life. However, these resources have been subjected to stress due to population growth, economic and industrial growth, pollution and climate change. With these, the recovery of water from sources such as wastewater, dirty water, floodwater and seawater is a sustainable alternative. The potential of recovering water from these sources could be done by utilizing forward osmosis, a membrane process that exploits the natural osmotic pressure gradient between solutions which requires low energy operation. This study evaluated the potential of forward osmosis (FO) composite membranes fabricated from bacterial cellulose (BC) and modified with sodium alginate. The membranes were evaluated for water flux and salt rejection. The effect of alginate concentrations and impregnation temperatures were evaluated using 0.6 M sodium chloride solution as feed and 2 M glucose solution as the draw solution. The membranes were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Contact Angle Meter (CAM). The use of sodium alginate in BC membrane showed a thicker membrane (38.3 μm to 67.6 μm), denser structure (shown in the SEM images), and more hydrophilic (contact angle ranges from 28.39° to 32.97°) compared to the pristine BC membrane (thickness = 12.8 μm and contact angle = 66.13°). Furthermore, the alginate modification lowered the water flux of the BC membrane from 9.283 L/m2-h (LMH) to value ranging from 2.314 to 4.797 LMH but the improvement in salt rejection was prominent (up to 98.57%).


2021 ◽  
Author(s):  
Hong Bin Gu

Commercial polypropylene microfiltration membranes (PPMM) and biaxial oriented polypropylene (BOPP) films were ozonated in aqueous and gaseous media, respectively, followed by graft polymerization of acryl amide (AAm), hydroxyethyl methacrylate (HEMA), and polyethylene glycol (PEG) to improve their surface hydrophilicity. The efficiency of ozonation conducted in the gaseous and aqueous phases was compared, the gaseous phase ozonation was found slightly more effective in generating peroxide groups, while the aqueous phase ozonation was found more effective in grafting polymerization. Scavengers were added to the aqueous phase ozonation, results indicated that both the radical groups and the molecule ozone contributed to the peroxide generation. The free radical groups contributed maximum 25% and 32% for ozonation of PPMM and BOPP, respectively, and the molecule ozone contributed the percentage remaining. Results also showed that the concentration of peroxides generated on the surfaces of PPMM or BOPP increased with the applied ozone dose and ozonation time in both phases. Copper sulfate hydrate (CuSO4·5H2O) and ferric chloride hydrate (FeCl3·6H2O) were added in the aqueous phase ozonation as homogenous catalysts, results showed that the peroxide generation rate of PPMM and BOPP was improved comparing to that of ozonation without catalyst. The peroxide generation of PPMM showed 17% increase by adding copper catalyst, and 16% increase in peroxide generation was observed in ferric catalyzed ozonation of BOPP. The mechanism of the aqueous phase ozonation was investigated, along with that of catalytic ozonation. An enhanced radical process was found for catalytic ozonation in this study. The hydrophilicity of PPMM and BOPP was improved by graft polymerization of AAm, HEMA and PEG initiated by the peroxides. The aqueous phase ozonation was found more effective in grafting. A washing test was conducted using distilled water blending with 10% isopropyl alcohol. When the ozonated membranes and films were washed and compared to the non-washed ones, it was found that the gaseous phase ozonated PPMM or BOPP lost more peroxides than their aqueous phase counterpart after washing. The washing tests showed that the aqueous phase ozonation could induce a better graft polymerization, because part of the tested peroxides from the gaseous ozonation was washed away in the cleaning and grafting process. The improved hydrophilicity of PPMM was indicated by the contact angle reduction from 129° to 91° for AAm grafting; from 126° to 74° for HEMA grafting; and from 126° to 88° for PEG grafting; Fourier Transform Infrared (FTIR) measurements showed additional peaks of functional groups, such as amine (N-H) and amide (–N-C=O) functional groups from the grafted AAm (CH2=CH-CO-NH2); and the Scanning Electron Microscope (SEM) images confirmed amorphicity changes of the graft polymerization. X-ray Diffraction (XRD) diffractogram revealed the crystallinity changes of ozonated and grafted PPMM. Bovine serum albumin (BSA) was used to test the filtration performance of virgin and grafted membranes, the filtration tests demonstrated the improvement in anti-fouling effect of the modified PPMM; and the SEM images of the fouled and washed membranes revealed the pore blockage and recovering on the surface. The hydrophilicity of the grafted BOPP was also improved, indicated by the contact angle reduction of AAm grafted film from 80° to 56°. The FTIR showed additional peaks of N-H and –N-C=O functional groups of grafted AAm. SEM images indicated amorphicity changes of the graft polymerization. The film modified by the aqueous phase ozonation showed its advantages of better graft polymerization, hydrophilicity, and protein adsorption. The results of this study positively impacted the industrial using of PPMM to elongate its duration time of filtration, and improved the applications of BOPP in biomedical areas


Sign in / Sign up

Export Citation Format

Share Document