scholarly journals Hydrophilic modification of polypropylene membranes and films by catalytic ozonation

2021 ◽  
Author(s):  
Hong Bin Gu

Commercial polypropylene microfiltration membranes (PPMM) and biaxial oriented polypropylene (BOPP) films were ozonated in aqueous and gaseous media, respectively, followed by graft polymerization of acryl amide (AAm), hydroxyethyl methacrylate (HEMA), and polyethylene glycol (PEG) to improve their surface hydrophilicity. The efficiency of ozonation conducted in the gaseous and aqueous phases was compared, the gaseous phase ozonation was found slightly more effective in generating peroxide groups, while the aqueous phase ozonation was found more effective in grafting polymerization. Scavengers were added to the aqueous phase ozonation, results indicated that both the radical groups and the molecule ozone contributed to the peroxide generation. The free radical groups contributed maximum 25% and 32% for ozonation of PPMM and BOPP, respectively, and the molecule ozone contributed the percentage remaining. Results also showed that the concentration of peroxides generated on the surfaces of PPMM or BOPP increased with the applied ozone dose and ozonation time in both phases. Copper sulfate hydrate (CuSO4·5H2O) and ferric chloride hydrate (FeCl3·6H2O) were added in the aqueous phase ozonation as homogenous catalysts, results showed that the peroxide generation rate of PPMM and BOPP was improved comparing to that of ozonation without catalyst. The peroxide generation of PPMM showed 17% increase by adding copper catalyst, and 16% increase in peroxide generation was observed in ferric catalyzed ozonation of BOPP. The mechanism of the aqueous phase ozonation was investigated, along with that of catalytic ozonation. An enhanced radical process was found for catalytic ozonation in this study. The hydrophilicity of PPMM and BOPP was improved by graft polymerization of AAm, HEMA and PEG initiated by the peroxides. The aqueous phase ozonation was found more effective in grafting. A washing test was conducted using distilled water blending with 10% isopropyl alcohol. When the ozonated membranes and films were washed and compared to the non-washed ones, it was found that the gaseous phase ozonated PPMM or BOPP lost more peroxides than their aqueous phase counterpart after washing. The washing tests showed that the aqueous phase ozonation could induce a better graft polymerization, because part of the tested peroxides from the gaseous ozonation was washed away in the cleaning and grafting process. The improved hydrophilicity of PPMM was indicated by the contact angle reduction from 129° to 91° for AAm grafting; from 126° to 74° for HEMA grafting; and from 126° to 88° for PEG grafting; Fourier Transform Infrared (FTIR) measurements showed additional peaks of functional groups, such as amine (N-H) and amide (–N-C=O) functional groups from the grafted AAm (CH2=CH-CO-NH2); and the Scanning Electron Microscope (SEM) images confirmed amorphicity changes of the graft polymerization. X-ray Diffraction (XRD) diffractogram revealed the crystallinity changes of ozonated and grafted PPMM. Bovine serum albumin (BSA) was used to test the filtration performance of virgin and grafted membranes, the filtration tests demonstrated the improvement in anti-fouling effect of the modified PPMM; and the SEM images of the fouled and washed membranes revealed the pore blockage and recovering on the surface. The hydrophilicity of the grafted BOPP was also improved, indicated by the contact angle reduction of AAm grafted film from 80° to 56°. The FTIR showed additional peaks of N-H and –N-C=O functional groups of grafted AAm. SEM images indicated amorphicity changes of the graft polymerization. The film modified by the aqueous phase ozonation showed its advantages of better graft polymerization, hydrophilicity, and protein adsorption. The results of this study positively impacted the industrial using of PPMM to elongate its duration time of filtration, and improved the applications of BOPP in biomedical areas

2021 ◽  
Author(s):  
Hong Bin Gu

Commercial polypropylene microfiltration membranes (PPMM) and biaxial oriented polypropylene (BOPP) films were ozonated in aqueous and gaseous media, respectively, followed by graft polymerization of acryl amide (AAm), hydroxyethyl methacrylate (HEMA), and polyethylene glycol (PEG) to improve their surface hydrophilicity. The efficiency of ozonation conducted in the gaseous and aqueous phases was compared, the gaseous phase ozonation was found slightly more effective in generating peroxide groups, while the aqueous phase ozonation was found more effective in grafting polymerization. Scavengers were added to the aqueous phase ozonation, results indicated that both the radical groups and the molecule ozone contributed to the peroxide generation. The free radical groups contributed maximum 25% and 32% for ozonation of PPMM and BOPP, respectively, and the molecule ozone contributed the percentage remaining. Results also showed that the concentration of peroxides generated on the surfaces of PPMM or BOPP increased with the applied ozone dose and ozonation time in both phases. Copper sulfate hydrate (CuSO4·5H2O) and ferric chloride hydrate (FeCl3·6H2O) were added in the aqueous phase ozonation as homogenous catalysts, results showed that the peroxide generation rate of PPMM and BOPP was improved comparing to that of ozonation without catalyst. The peroxide generation of PPMM showed 17% increase by adding copper catalyst, and 16% increase in peroxide generation was observed in ferric catalyzed ozonation of BOPP. The mechanism of the aqueous phase ozonation was investigated, along with that of catalytic ozonation. An enhanced radical process was found for catalytic ozonation in this study. The hydrophilicity of PPMM and BOPP was improved by graft polymerization of AAm, HEMA and PEG initiated by the peroxides. The aqueous phase ozonation was found more effective in grafting. A washing test was conducted using distilled water blending with 10% isopropyl alcohol. When the ozonated membranes and films were washed and compared to the non-washed ones, it was found that the gaseous phase ozonated PPMM or BOPP lost more peroxides than their aqueous phase counterpart after washing. The washing tests showed that the aqueous phase ozonation could induce a better graft polymerization, because part of the tested peroxides from the gaseous ozonation was washed away in the cleaning and grafting process. The improved hydrophilicity of PPMM was indicated by the contact angle reduction from 129° to 91° for AAm grafting; from 126° to 74° for HEMA grafting; and from 126° to 88° for PEG grafting; Fourier Transform Infrared (FTIR) measurements showed additional peaks of functional groups, such as amine (N-H) and amide (–N-C=O) functional groups from the grafted AAm (CH2=CH-CO-NH2); and the Scanning Electron Microscope (SEM) images confirmed amorphicity changes of the graft polymerization. X-ray Diffraction (XRD) diffractogram revealed the crystallinity changes of ozonated and grafted PPMM. Bovine serum albumin (BSA) was used to test the filtration performance of virgin and grafted membranes, the filtration tests demonstrated the improvement in anti-fouling effect of the modified PPMM; and the SEM images of the fouled and washed membranes revealed the pore blockage and recovering on the surface. The hydrophilicity of the grafted BOPP was also improved, indicated by the contact angle reduction of AAm grafted film from 80° to 56°. The FTIR showed additional peaks of N-H and –N-C=O functional groups of grafted AAm. SEM images indicated amorphicity changes of the graft polymerization. The film modified by the aqueous phase ozonation showed its advantages of better graft polymerization, hydrophilicity, and protein adsorption. The results of this study positively impacted the industrial using of PPMM to elongate its duration time of filtration, and improved the applications of BOPP in biomedical areas


1996 ◽  
Vol 451 ◽  
Author(s):  
T. Shimizu ◽  
M. Murahara

ABSTRACTA Fluorocarbon resin surface was selectively modified by irradiation with a ArF laser beam through a thin layer of NaAlO2, B(OH)3, or H2O solution to give a hydrophilic property. As a result, with low fluence, the surface was most effectively modified with the NaAlO2 solution among the three solutions. However, the contact angle in this case changed by 10 degrees as the fluence changed only 1mJ/cm2. When modifying a large area of the surface, high resolution displacement could not be achieved because the laser beam was not uniform in displacing functional groups. Thus, the laser fluence was successfully made uniform by homogenizing the laser beam; the functional groups were replaced on the fluorocarbon resin surface with high resolution, which was successfully modified to be hydrophilic by distributing the laser fluence uniformly.


2014 ◽  
Vol 70 (2) ◽  
Author(s):  
Sutthisa Konruang ◽  
Thawat Chittrakarn ◽  
Suksawat Sirijarukul

The effects of ultraviolet (UV) irradiation for surface modification of hydrophobic asymmetric polysulfone membranes have been investigated. The asymmetric polysulfone (PSF) membranes were prepared by phase inversion method using 19%-25% of PSF in two solvents, viz. dimethylacetamide (DMF) and Acetone (Ac) collectively. The surface of asymmetric polysulfone membranes were modified by UV ray with 254 and 312 nm wavelength. Chemical and physical properties of the untreated and the treated membranes were characterized. Scanning electron microscope (SEM) was used to determine asymmetric structure of polysulfone membranes. Contact angle device was used to analyzed the effected of UV ray treatment on hydrophilicity of membranes surface. Polar functional groups introduced by UV irradiation were examined using FTIR. The water flux was measured under a pressure of 500 kPa to 2,500 kPa with a feed temperature of 25°C. It was shown that asymmetric polysulfone membranes were produced and the UV ray treatment significantly alters the hydrophilicity of membranes surface indicated by the reduction of water contact angle with increasing treatment time. The FTIR analysis showed the formations of polar functional groups such as hydroxyl and carbonyl groups. Consequently, the surface of asymmetric polysulfone membranes was changed from hydrophobic to hydrophilic by UV irradiation leading to the enhancement of the water flux.


2018 ◽  
Vol 80 (3-2) ◽  
Author(s):  
Ngan T. B. Dang ◽  
Liza B. Patacsil ◽  
Aileen H. Orbecido ◽  
Ramon Christian P. Eusebio ◽  
Arnel B. Beltran

Water resources are very important to sustain life. However, these resources have been subjected to stress due to population growth, economic and industrial growth, pollution and climate change. With these, the recovery of water from sources such as wastewater, dirty water, floodwater and seawater is a sustainable alternative. The potential of recovering water from these sources could be done by utilizing forward osmosis, a membrane process that exploits the natural osmotic pressure gradient between solutions which requires low energy operation. This study evaluated the potential of forward osmosis (FO) composite membranes fabricated from bacterial cellulose (BC) and modified with sodium alginate. The membranes were evaluated for water flux and salt rejection. The effect of alginate concentrations and impregnation temperatures were evaluated using 0.6 M sodium chloride solution as feed and 2 M glucose solution as the draw solution. The membranes were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Contact Angle Meter (CAM). The use of sodium alginate in BC membrane showed a thicker membrane (38.3 μm to 67.6 μm), denser structure (shown in the SEM images), and more hydrophilic (contact angle ranges from 28.39° to 32.97°) compared to the pristine BC membrane (thickness = 12.8 μm and contact angle = 66.13°). Furthermore, the alginate modification lowered the water flux of the BC membrane from 9.283 L/m2-h (LMH) to value ranging from 2.314 to 4.797 LMH but the improvement in salt rejection was prominent (up to 98.57%).


2021 ◽  
Vol 29 (9_suppl) ◽  
pp. S1361-S1370
Author(s):  
Xuwu Luo ◽  
Guancheng Jiang ◽  
Xinliang Li ◽  
Lili Yang

In this paper, sodium montmorillonite was modified with gelatin of different concentrations, and various colloidal characteristics of the gelatin-treated clays were measured and analyzed in detail. First, the influence of gelatin on the interlayer space of Mt layers was investigated by X-ray diffraction analysis. Moreover, the aggregation of Mt particles was examined using a combination of electron microscopy and particle size distribution experiments, while the variation of the electrical property of Mt was measured using ζ potential test. Gelatin of different concentrations can increase the particle size of Mt in different degrees. The addition of 4% gelatin could improve the ζ potential of Mt from −30.65 to −15.55 mV. The wettability change of modified Mt induced by the adsorption of gelatin was followed by measurements of water contact angle and observations of the morphology of Mt/gelatin membrane through SEM images. 4% gelatin could improve the water contact angle of Mt to 81.3°. Finally, the rheological properties of Mt/gelatin dispersion including shear viscosity and shear stress were measured using a stress-controlled rheometer. All of the results were consistent by showing that the overall colloidal characteristics and behavior of the gelatin-treated Mt strongly varied depending on the gelatin concentration used in the modification process. These results can provide a deep and comprehensive understanding of the colloidal properties of clay/gelatin systems and give important guidance for the performance design and improvement of Mt/gelatin composite materials. Furthermore, this study can also be expanded the application of gelatin and its composites to other fields.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1257
Author(s):  
Eshraga A. A. Siddig ◽  
Yu Zhang ◽  
Baojing Yang ◽  
Tianshu Wang ◽  
Jianjun Shi ◽  
...  

A durable flame-resistant and ultra-hydrophobic phosphorus–fluoride coating on aramid fabrics was achieved by plasma-induced graft polymerization. The aramid fabrics were activated and roughed through the low-pressure plasma firstly, which involves the sequential coating of a mixture of phosphorus–fluoride emulsion copolymer. When potentially exposed to flame or water, such a surface produces a dual effect in which it is intumescent and waterproof, successfully giving the coated fabrics flame-resistant ultra-hydrophobic bifunctional properties. Thus, adhesive coatings provide a convenient way to resolve the issue of washing durability of the coatings. The as-prepared fabrics last for 10 repeatable washing cycles without losing their flame resistance and superhydrophobicity, suggesting future applications as advanced multifunctional textiles. Compared to an untreated coating, its char length was less than 1 cm with no measurable after-flame or after-glow times, and its static water contact angle remained stable above 170°. Meanwhile, the control sample was unable to extinguish the fire with a damage length of 10.6 cm and a water contact angle of 100°. All the results indicate that plasma-reactive polar groups interact between phosphorus and fluorine elements, leading to an increased relative atom ratio P and F through Energy-Dispersive Spectrometer (EDS) spectra and XPS analysis, which inhibits the flammability and wettability.


2016 ◽  
Vol 11 (1) ◽  
pp. 155892501601100
Author(s):  
Jinmei Du ◽  
Lulu Zhang ◽  
Jing Dong ◽  
Ying Li ◽  
Changhai Xu ◽  
...  

Surface roughness and surface energy are two important factors affecting the hydrophobicity of nylon fabric. In this study, nylon fabric was treated for hydrophobicity with tetrabutyltitanate (TBT) and octadecylamine (OA) which were respectively responsible for increasing surface roughness and reducing surface energy. In order to enhance the hydrophobicity, In order to further enhance hydrophobicity by increasing available reactive sites, 1,2,3,4–butanetetracarboxylic acid (BTCA) was applied as a pretreatment to the nylon fabric It was found that the carboxyl content of nylon was increased by the BTCA pretreatment. SEM images showed that the TBT treatment produced small particles on nylon fabric which made surface rough. The water contact angle of nylon fabric treated with BTCA, TBT and OA was measured to be 134°, which was much greater than the water contact angle of nylon fabric treated only with OA. This indicated that the surface roughness resulting from the TBT treatment played an important role in improving hydrophobicity of the treated nylon fabric. The resistance to water penetration and the repellency of water spray of nylon fabric treated with BTCA, TBT and OA were respectively measured to be 27.64 mbar and 85 out of 100.


2018 ◽  
Vol 61 (4) ◽  
pp. 1335-1349 ◽  
Author(s):  
Md S. Borhan ◽  
Shafiqur Rahman ◽  
Niloy Chandra Sarker

Abstract. Biomass-derived biochars have shown potential for improving soil properties as a whole that are conducive to plant growth with reduced environmental pollution. Four types of biomass, namely, corn stover (CS), dried distillers’ grains and solubles (DDGS), dairy manure (DM), and beef feedlot manure (BFM), were transformed to biochar through pyrolysis at 400°C with 1, 2, or 3 h residence time. The biochars were characterized by proximate analysis (volatile matter (VM), ash, and fixed carbon (FC)), ultimate analysis (total carbon (TC), hydrogen (H), nitrogen (N), sulfur (S), and oxygen (O)), and thermogravimetric analysis (pH, electrical conductivity (EC) and bulk density (BD)). Scanning electron microscopy (SEM), energy dispersion spectroscopy (EDXS), and Fourier transform infrared radiation (FTIR) spectroscopy were used to categorize pore size, functional groups, and mineralogical properties related to potential use in environmental remediation. The highest heating value (HV) was measured with CS (28 to 29 MJ kg-1), and the lowest HV was measured with BFM (~5 MJ kg-1). The greatest organic carbon (OC) content was obtained with CS (68%), followed by DDGS (63%), DM (44%), and BFM (15.4%) biochars. The SEM images showed the macrocellular morphology of the original shape of the biomass particles, which consisted mainly of aggregate microspheres 2 to 10 µm in size. The surface functional groups of all four biochars were dominated by hydroxyl, methyl, methylene, aromatic carbonyl/carboxylic, and alkene groups. The CS and DDGS biochars showed higher TC (76%), FC (61%), OC (67%), water holding capacity, and mineral contents and outperformed the DM and BFM biochars as the best soil amendments. Keywords: Beef feedlot manure, Corn stover, Dairy manure, Dried distillers’ grains and solubles.


Sign in / Sign up

Export Citation Format

Share Document