scholarly journals APPLICATION OF IMPACT THEORY TO ANALYSIS OF GEAR SHIFTS IN DUAL-CLUTCH TRANSMISSIONS

2021 ◽  
Vol 161 ◽  
pp. 29-37
Author(s):  
K. Salamandra ◽  
G. Korendyasev

The article discusses a dynamic model of a transmission containing a dual-clutch gearbox. The absence of a torque converter in such gearboxes, taking into account the short duration of gear shifting (0.2 - 0.5 sec), allows us to present the gear shifting process as an impact. Gear shifting excites the output shaft of the gearbox. Thus, the transmission of the vehicle can beconsidered as a vibro-impact self-oscillating system.

Author(s):  
Sayyed Hossein Edjtahed ◽  
Amir Hossein Pir Zadeh ◽  
Abolfazl Halavaei Niasar

The hysteresis motor is a well-known synchronous motor that is used in special small power, high speed applications. Dynamic modeling and analysis of this motor is more complicated than permanent magnet synchronous motors (PMSMs) or induction motors (IMs) due to nonlinear behavior of rotor magnetic material. Short over-excitation is a unique phenomenon that only occurs in hysteresis motor in which the terminal voltage increase at synchronous speed for a short duration, and then continuously is decrease to initial value. Therefore, the input current is reduced, this leads to more power factor and efficiency enhancement. Till now, there isn’t any analytic dynamic model of this phenomenon. In this paper, based on a novel dynamic model of hysteresis motor, the over-excitation phenomenon is investigated and transient performance of the motor during over-excitation is simulated via Simulink.


1976 ◽  
Vol 190 (1) ◽  
pp. 447-456 ◽  
Author(s):  
Frederic Williams ◽  
D. Tipping

SYNOPSIS A torque converter is described in which the prime mover is directly coupled to a pulsator unit which produces an alternating torque. Sprag-type clutches are used to rectify this torque and to transmit it to the converter output shaft. A developed version of this basic design for use as an automobile automatic transmission is described and theoretical and experimental performance curves are given which show that an automobile drive is possible which approaches a manual transmission for fuel consumption and performance.


2013 ◽  
Vol 397-400 ◽  
pp. 369-373 ◽  
Author(s):  
Jun Yi ◽  
Shui Sheng Chen ◽  
Da Zhang You

The dynamic characteristic of automatic transmission system of tracked vehicle was thorough analyzed. The primary characteristic of torque converter was proposed by means of regression analysis of test result. The dynamic model of three-freedom planetary transmission was constituted using drive principles of planetary transmission. Thus the foundation of intelligent control and simulation system of automatic transmission of tracked vehicle was established.


2013 ◽  
Vol 475-476 ◽  
pp. 1375-1381
Author(s):  
Jian Rui Duan ◽  
Jin Yao ◽  
Hua Li

In order to calculate the friction work of lock-up clutch, which come from the lock-up process of hydraulic torque converter, this article established a simplified dynamic model of the engine and hydraulic torque converter , according to the route of power transmission and the rule of moment balance. And then the mathematical model of the lock-up process was deduced. This article reached a calculation method of lock-up clutch friction work by the mathematical model , and did some further simplified. Meanwhile, the lock-up process was simulated by Matlab/Simulink. By analyzing the simulatin resultthe computed result of machinery bookthe computed result of the improved method, the correctness of the improved method was verified.


Author(s):  
Z Zhang ◽  
J Shen ◽  
W Zhong ◽  
Z Sun

A dynamic model of ballistic impact against ceramic/FRP (fibre-reinforced plastic) hybrid composites is presented in this paper. This model describes each status of the projectile and armour at different instants in the process of impact. Based on the Florence and low-velocity models, a three-phase impact theory is developed which forms a dynamic model. Equations are given for different impact phases to depict erosion, momentum and displacement of the projectile and target, which are then used by the computer to make calculations and simulations. Furthermore, the dynamic model has been checked to find agreement with ballistic tests. The dynamic model will be very helpful in the estimation of ballistic impact properties and optimum design of the ceramic/FRP hybrid composites.


2011 ◽  
Vol 86 ◽  
pp. 424-427 ◽  
Author(s):  
Jian Jun Yang ◽  
Bing Yang Wei ◽  
Xiao Zhong Deng ◽  
Zong De Fang

Based on non-smooth impact theory, the dynamic model of spiral bevel gear is constructed by considering of input shaft angle excitation. The Maximal Lyapunov Exponents (MLEs) curves for backlash 0.10mm and 0.14mm caused by exciting amplitude are given. The simulation results indicate that gear backlash, excited amplitude and retard torque have influence on the dynamics behavior of spiral bevel gear system. The experiments show that the vibration noise is deduced after ultrasonic gear lapping.


Author(s):  
Sung-Moon Park ◽  
Tae-Won Park ◽  
Soo-Ho Lee ◽  
Kab-Jin Jun ◽  
Sung-Pil Jung ◽  
...  

In this study, a new concept of power delivery system is developed. Power Shift Drive (PSD)-Axle vehicle modeling and dynamic movement analysis are performed by simulation. The dynamic vehicle model is constructed from data obtained from the derived equation, considering the specific characteristic of each part. The model is composed of a torque converter, a gear box, a differential, hub reduction and an engine, which is the power source of the 1st forward and reverse PSD-Axle, as the principle parts. By unifying the mathematical equation of each component, a mathematical model of the 1st forward gear is derived. The system dynamic model is created using Matlab/Simulink based on the mathematical model. Simulation is carried out using simulink to estimate the dynamic behavior of the PSD-Axle. Also, the dynamo test result is used to verify the reliability of the system dynamic model. This study can be used to establish the basic design concept for the forward and reverse PSD-Axle multi gear system.


1999 ◽  
Vol 173 ◽  
pp. 249-254
Author(s):  
A.M. Silva ◽  
R.D. Miró

AbstractWe have developed a model for theH2OandOHevolution in a comet outburst, assuming that together with the gas, a distribution of icy grains is ejected. With an initial mass of icy grains of 108kg released, theH2OandOHproductions are increased up to a factor two, and the growth curves change drastically in the first two days. The model is applied to eruptions detected in theOHradio monitorings and fits well with the slow variations in the flux. On the other hand, several events of short duration appear, consisting of a sudden rise ofOHflux, followed by a sudden decay on the second day. These apparent short bursts are frequently found as precursors of a more durable eruption. We suggest that both of them are part of a unique eruption, and that the sudden decay is due to collisions that de-excite theOHmaser, when it reaches the Cometopause region located at 1.35 × 105kmfrom the nucleus.


2008 ◽  
Vol 45 ◽  
pp. 147-160 ◽  
Author(s):  
Jörg Schaber ◽  
Edda Klipp

Volume is a highly regulated property of cells, because it critically affects intracellular concentration. In the present chapter, we focus on the short-term volume regulation in yeast as a consequence of a shift in extracellular osmotic conditions. We review a basic thermodynamic framework to model volume and solute flows. In addition, we try to select a model for turgor, which is an important hydrodynamic property, especially in walled cells. Finally, we demonstrate the validity of the presented approach by fitting the dynamic model to a time course of volume change upon osmotic shock in yeast.


Sign in / Sign up

Export Citation Format

Share Document