Study on Ultrasonic Lapping System of Spiral Bevel Gear

2011 ◽  
Vol 86 ◽  
pp. 424-427 ◽  
Author(s):  
Jian Jun Yang ◽  
Bing Yang Wei ◽  
Xiao Zhong Deng ◽  
Zong De Fang

Based on non-smooth impact theory, the dynamic model of spiral bevel gear is constructed by considering of input shaft angle excitation. The Maximal Lyapunov Exponents (MLEs) curves for backlash 0.10mm and 0.14mm caused by exciting amplitude are given. The simulation results indicate that gear backlash, excited amplitude and retard torque have influence on the dynamics behavior of spiral bevel gear system. The experiments show that the vibration noise is deduced after ultrasonic gear lapping.

2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Haimin Zhu ◽  
Weifang Chen ◽  
Rupeng Zhu ◽  
Jie Gao ◽  
Meijun Liao

To accurately study the dynamic characteristics of the spiral bevel gear transmission system in a helicopter tail transmission system, the finite element model of the gear shaft was established by a Timoshenko beam element, and the mechanical model of the spiral bevel gear was created by the lumped mass method. The substructure method is employed to extract the dynamic parameters from the gearbox’s finite element model, and the dynamic model of the spiral bevel gear-shaft-bearing-gearbox coupling system was built according to the interface coordination conditions. In the model, the influences of time-varying stiffness, a time-varying transmission error, gearbox flexibility, unbalance excitation, and a flexible shaft and bearing support on the system vibration were taken into account simultaneously. On this basis, the dynamic differential equations of the full coupling system of the spiral bevel gear were derived, and the effects of the gearbox flexibility, the shaft angle, and the unbalance on the dynamic properties of the system were analysed. The results show that the gearbox flexibility can reduce the gear meshing force and bearing force, in which there is a more significant impact on the bearing force. The shaft angle affects the position, size, and direction of the system’s axis trajectory. Meanwhile, the meshing force and the bearing force of the system are also varied because of the various pitch angles of the driving and driven gears under different shaft angles. The unbalance of the gear shaft has an effect on the vibration of the spiral bevel gear transmission system in all directions, wherein the influence on the torsional vibration is the most significant, and the influence increases as the unbalance rises. The unbalance of the gear shaft also affects the meshing force and bearing force, which increases as the rotational speed rises. This research provides a theoretical basis to optimize dynamic performance and reduce the vibration and noise of a spiral bevel gear full coupling system.


2006 ◽  
Vol 129 (9) ◽  
pp. 949-959 ◽  
Author(s):  
Vladimir I. Medvedev ◽  
Andrey E. Volkov

An algorithm for synthesis of spiral bevel gear transmissions with a small shaft angle is presented. The algorithm of synthesis provides machine-tool settings with account of design limits for majority of gear generating machines. The proposed algorithm makes it possible to decrease the dimensions of machines that are used for gear and pinion tooth generation. The computer program of synthesis is developed that is based on described algorithm. Recommendations on selection of proper synthesis parameters are presented. An example of synthesis and analysis of a transmission is considered.


Author(s):  
Haimin Zhu ◽  
Weifang Chen ◽  
Rupeng Zhu ◽  
Li Zhang ◽  
Bibo Fu ◽  
...  

The coupled dynamic model of the intermediate and tail gearboxes’ spiral bevel gear-oblique tail shaft-laminated membrane coupling was established by employing the hybrid modeling method of finite element and lumped mass. Among them, the dynamic equation of the shaft was constructed by Timoshenko beam; spiral bevel gears were derived theoretically by the lumped-mass method, where the effects of time-varying meshing stiffness, transmission error, external imbalance excitation and the like were considered simultaneously; laminated membrane coupling was simplified to a lumped parameter model, in which the stiffness was obtained by the finite element simulation and experiment. On this basis, the laminated membrane coupling and effects of several important parameters, including the unbalance value, tail rotor excitation, oblique tail shaft’s length and transmission error amplitude, on the system’s dynamic characteristics were discussed. The results showed that the influences of laminated membrane coupling and transmission error amplitude on the coupled system’s vibration response were prominent, which should be taken into consideration in the dynamic model. Due to the bending-torsional coupled effect, the lateral vibration caused by gear eccentricity would enlarge the oblique tail shaft’s torsional vibration; similarly, the tail rotor’s torsional excitation also varies the lateral vibration of the oblique tail shaft. The coupled effect between the eccentricity of gear pairs mainly hit the torsional vibration. Also, as the oblique tail shaft’s length increased, the torsional vibration of the oblique tail shaft tended to diminish while the axis orbit became larger. The research provides theoretical support for the design of the helicopter tail transmission system.


2014 ◽  
Vol 686 ◽  
pp. 517-521
Author(s):  
Zhi Gang Liu

This paper analyzed the adjustment principle and calculation method of parameters for CNC spiral bevel gear milling machine, and establish the models of NC machining of spiral bevel gear milling machine. Through the calculation of examples, we acquire the machine tool axes of the instantaneous position when CNC spiral bevel gear milling machine process. The paper establish simulation machine model of spiral bevel gear milling machine and the simulation processing. The simulation results meet the spiral bevel gear milling machine functional verification requirements.


2019 ◽  
Vol 98 (2) ◽  
pp. 1081-1105 ◽  
Author(s):  
Weitao Chen ◽  
Siyu Chen ◽  
Zehua Hu ◽  
Jinyuan Tang ◽  
Haonan Li

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Jinli Xu ◽  
Fancong Zeng ◽  
Xingyi Su

A spiral bevel gear system supported on thrust bearings considering the coupled bending-torsional nonlinear vibration is proposed and an eight degrees of freedom (8DOF) lumped parameter dynamic model of the spiral bevel gear system combined with time-varying stiffness, static transmission error, gear backlash, and bearing clearances is investigated. The spiral bevel gear system is analyzed with the equations of motion and the dynamic response is solved using the Runge-Kutta method. The effects of mesh frequency, mesh damping coefficient, load coefficient, and gear backlash are revealed, which describe the true mesh characteristics of the spiral bevel gear system. The bifurcation characteristics as jump discontinuities, periodic windows, and chaos are obtained by studying time histories, phase plane portraits, Poincaré maps, Fourier spectra, and global bifurcation diagrams of the gear system. The results presented in this study provide some useful information for engineers in designing and controlling such gear systems.


Author(s):  
X Zhu ◽  
Y Dai ◽  
F Ma ◽  
B Ouyang

In aeroengine industry, the oil jet layout significantly influences lubrication of high-speed and heavy-load transmission gears, as there is only extremely limited meshing clearance for the oil stream jetting into and an inevitable blocking effect of rotating gears. A novel mathematical model for calculating the exact impingement depth of the lubrication oil jet on the spiral bevel gear surface has been established, and it contains comprehensive and detailed design parameters for the jet nozzle layout and meshing gears. Furthermore, under different jet layout parameters conditions, computational fluid dynamic numerical simulations for oil jet lubrication of an aeronautical spiral bevel gear pair were conducted and, then, the simulation results are compared with the impingement depths based on the mathematical model. The simulation results reveal that the oil volume fraction and oil pressure on the meshing area increase with the impingement depth, validating the effectiveness and reliability of the method using the impingement depth mathematical model for evaluating oil jet lubrication. Optimized oil jet layout parameters including the jet nozzle position, jet elevation angle, and jet azimuth angle have been determined and recommended, and they provide valuable theoretical design methods and technical guidance for oil jet lubrication optimization for various practical high-speed and heavy-load spiral bevel gears.


Author(s):  
Xiangying Hou ◽  
Yuzhe Zhang ◽  
Hong Zhang ◽  
Jian Zhang ◽  
Zhengminqing Li ◽  
...  

The vector form intrinsic finite element (VFIFE) method is springing up as a new numerical method in strong non-linear structural analysis for its good convergence, but has been constricted in static or transient analysis. To overwhelm its disadvantages, a new damping model was proposed: the value of damping force is proportional to relative velocity instead of absolute velocity, which could avoid inaccuracy in high-speed dynamic analysis. The accuracy and efficiency of the proposed method proved under low speed; dynamic characteristics and vibration rules have been verified under high speed. Simulation results showed that the modified VFIFE method could obtain numerical solutions with good efficiency and accuracy. Based on this modified method, high-speed vibration rules of spiral bevel gear pair under different loads have been concluded. The proposed method also provides a new way to solve high-speed rotor system dynamic problems.


Sign in / Sign up

Export Citation Format

Share Document