scholarly journals Prediction of Oral Absorption of Low-Solubility Drugs by Using Rat Simulated Gastrointestinal Fluids: The Importance of Regional Differences in Membrane Permeability and Solubility

2014 ◽  
Vol 17 (1) ◽  
pp. 106 ◽  
Author(s):  
Yusuke Tanaka ◽  
Toshiyuki Baba ◽  
Koji Tagawa ◽  
Ryoichi Waki ◽  
Shunji Nagata

Purpose. This study aimed to develop a novel approach for predicting the oral absorption of low-solubility drugs by considering regional differences in solubility and permeability within the gastrointestinal (GI) tract. Methods. Simulated GI fluids were prepared to reflect rat in vivo bile acid and phospholipid concentrations in the upper and lower small intestine. The saturated solubility and permeability of griseofulvin (GF) and albendazole (AZ), a drug with low aqueous solubility, were measured using these simulated fluids, and fraction absorbed (Fa) at time t after oral administration was calculated. Results. The saturated solubility of GF and AZ, a drug with low aqueous solubility, differed considerably between the simulated GI fluids. Large regional differences in drugs concentration were also observed following oral administration in vivo. The predicted Fa values using solubility and permeability data of the simulated GI fluid were found to correspond closely to the in vivo data. Conclusion. These results indicated the importance of evaluating regional differences in drug solubility and permeability in order to predict oral absorption of low-solubility drugs accurately. The new methodology developed in the present study could be useful for new oral drug development. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

2010 ◽  
Vol 105 (2) ◽  
pp. 421-430 ◽  
Author(s):  
Ece Dilber Gamsiz ◽  
Lee Miller ◽  
Avinash G. Thombre ◽  
Imran Ahmed ◽  
Rebecca Lyn Carrier

2021 ◽  
Author(s):  
◽  
Rafael Leal Monteiro Paraiso

Computational oral absorption models, in particular PBBM models, provide a powerful tool for researchers and pharmaceutical scientists in drug discovery and formulation development, as they mimic and can describe the physiologically processes relevant to the oral absorption. PBBM models provide in vivo context to in vitro data experiments and allow for a dynamic understanding of in vivo drug disposition that is not typically provided by data from standard in vitro assays. Investigations using these models permit informed decision-making, especially regarding to formulation strategies in drug development. PBBM models, but can also be used to investigate and provide insight into mechanisms responsible for complex phenomena such as food effect in drug absorption. Although there are obviously still some gaps regarding the in silico construction of the gastrointestinal environment, ongoing research in the area of oral drug absorption (e.g. the UNGAP, AGE-POP and InPharma projects) will increase knowledge and enable improvement of these models. PBBM can nowadays provide an alternative approach to the development of in vitro–in vivo correlations. The case studies presented in this thesis demonstrate how PBBM can address a mechanistic understanding of the negative food effect and be used to set clinically relevant dissolution specification for zolpidem immediate release tablets. In both cases, we demonstrated the importance of integrating drug properties with physiological variables to mechanistically understand and observe the impact of these parameters on oral drug absorption. Various complex physiological processes are initiated upon food consumption, which can enhance or reduce a drug’s dissolution, solubility, and permeability and thus lead to changes in drug absorption. With improvements in modeling and simulation software and design of in vitro studies, PBBM modeling of food effects may eventually serve as a surrogate for clinical food effect studies for new doses and formulations or drugs. Furthermore, the application of these models may be even more critical in case of compounds where execution of clinical studies in healthy volunteers would be difficult (e.g., oncology drugs). In the fourth chapter we have demonstrated the establishment of the link between biopredictive in vitro dissolution testing (QC or biorelevant method) PBBM coupled with PD modeling opens the opportunity to set truly clinically relevant specifications for drug release. This approach can be extended to other drugs regardless of its classification according to the BCS. With the increased adoption of PBBM, we expect that best practices in development and verification of these models will be established that can eventually inform a regulatory guidance. Therefore, the application of Physiologically Based Biopharmaceutical Modelling is an area with great potential to streamline late-stage drug development and impact on regulatory approval procedures. Freie Schlagwörter / Tags


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jong Bong Lee ◽  
Masar Radhi ◽  
Elena Cipolla ◽  
Raj D. Gandhi ◽  
Sarir Sarmad ◽  
...  

Abstract Although adenosine and its analogues have been assessed in the past as potential drug candidates due to the important role of adenosine in physiology, only little is known about their absorption following oral administration. In this work, we have studied the oral absorption and disposition pathways of cordycepin, an adenosine analogue. In vitro biopharmaceutical properties and in vivo oral absorption and disposition of cordycepin were assessed in rats. Despite the fact that numerous studies showed efficacy following oral dosing of cordycepin, we found that intact cordycepin was not absorbed following oral administration to rats. However, 3′-deoxyinosine, a metabolite of cordycepin previously considered to be inactive, was absorbed into the systemic blood circulation. Further investigation was performed to study the conversion of 3′-deoxyinosine to cordycepin 5′-triphosphate in vitro using macrophage-like RAW264.7 cells. It demonstrated that cordycepin 5′-triphosphate, the active metabolite of cordycepin, can be formed not only from cordycepin, but also from 3′-deoxyinosine. The novel nucleoside rescue metabolic pathway proposed in this study could be responsible for therapeutic effects of adenosine and other analogues of adenosine following oral administration. These findings may have importance in understanding the physiology and pathophysiology associated with adenosine, as well as drug discovery and development utilising adenosine analogues.


2009 ◽  
Vol 1 ◽  
pp. OED.S2857 ◽  
Author(s):  
Ravi S. Talluri ◽  
Ripal Gaudana ◽  
Sudharshan Hariharan ◽  
Ashim K. Mitra

Objective To delineate the plasma pharmacokinetics and determine the corneal uptake of valine based stereoisomeric dipeptide prodrugs of acyclovir (ACV) in rats. Methods Male Sprague-Dawley rats were used for the study. Pharmacokinetics of ACV, L-valine-acyclovir (LACV), L-valine-D-valine-acyclovir (LDACV) and D-valine-L-valine acyclovir (DLACV) prodrugs were delineated. These compounds were administered intravenously as a bolus via jugular vein cannula and orally by gavage. Samples were purified by protein precipitation method and analyzed by LC-MS/MS. Pertinent pharmacokinetic parameters were obtained by using WinNonlin. Corneal uptake studies of LDACV and LACV were studied following oral administration. Results Following i.v. administration, the area under the curve (AUC) in μM*min of generated ACV was in the order of LACV > LDACV > DLACV indicating their rate of metabolism. The AUC values of total drug obtained in the systemic circulation after oral administration LACV and LDACV were 1077.93 ± 236.09 and 1141.76 ± 73.67 μM*min, respectively. DLACV exhibited poor oral absorption. Cmax (μM) and AUC of the intact prodrug obtained in the systemic circulation following oral administration of LDACV were almost 4–5 times higher than LACV. Moreover, concentrations achieved in the cornea after oral administration of LDACV were almost two times of LACV. Conclusions LDACV increased both the oral bioavailability and subsequent in vivo corneal uptake of ACV Hence, LDACV can be considered as the most promising drug candidate for delivery of ACV, in treatment of both genital herpes and ocular herpes keratitis after oral administration.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4011-4011 ◽  
Author(s):  
Paul W. Manley ◽  
Jürgen Mestan ◽  
Jennifer Sheng ◽  
Phi Tran ◽  
Mark Kagan

Abstract Background There is a growing tendency for drugs to be grouped according to their perceived ‘class effects’, regardless of the different pharmacological profiles of the parent drugs and of their metabolites. Imatinib, dasatinib, nilotinib, bosutinib and, most recently ponatinib, are approved tyrosine kinase inhibitor (TKI) therapies for chronic myeloid leukemia (CML), which are clinically efficacious as a result of ABL1/ BCR-ABL inhibition. Following their oral administration at standard therapeutic doses, the parent drugs are the major circulating species by area under the curve (AUC). However in the case of imatinib, dasatinib, bosutinib and ponatinib, the exposure of patients to major metabolites can be substantial compared to that of parent drug, with CGP74588 (which is much less active than imatinib against both BCR-ABL and KIT; Bioorg Med Chem 2013;21:3231) representing 10% of imatinib by AUC (Clin Pharmacokinet 2005;44:879); M20 and M24 representing 45 and 25% of dasatinib (Drug Met Disp 2008;36:1341), M2 and M5 representing 19 and 25% of bosutinib (Clinical Pharmacology Biopharmaceutics Review, http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm) and AP24600 representing 58% of ponatinib (Clinical Pharmacology Biopharmaceutics Review, http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm). Such major metabolites might make significant contributions to the on- and off-target effects of the parent drugs in vivoand may be responsible for some of the side-effects observed in patients. Here we report on the metabolism of the potent and selective BCR-ABL inhibitor, nilotinib and the preclinical profile of its major metabolites. Methods The metabolism of nilotinib was characterised in healthy subjects after oral administration of two capsules containing 200 mg [14C]-labelled nilotinib (50 μCi), and blood plasma, feces and urine samples were assayed in an appropriate scintillant either by counting an aliquot directly or after homogenisation, air-drying and solubilisation. Metabolites were characterised and quantified by HPLC with radioactivity detection and identified by mass spectrometry (LC-MS/MS) and, when possible, co-elution with non-radiolabeled authentic samples. Synthesised samples of the metabolites were evaluated in a large panel of assays for potential effects on kinase and non-kinase enzymes, G-protein coupled receptors, cell transporters, ion channels and nuclear receptors. Results The oral absorption of nilotinib was determined to be ≥30% and excretion was mainly into the feces (93.5% of administered radioactivity), with neither nilotinib nor the identified metabolites being detected in the urine. Unchanged nilotinib was the major circulating component in human plasma, accounting for 87.5±9.2% of the total drug-related AUC. The main circulating metabolites were P41.6 (4.7% AUC), P36.5 (6.1% AUC), formed from oxidation of the methyl group in the methyl-imidazole moiety to a hydroxyl or carboxylic acid group, and P42.1 (1.3% AUC) resulting from oxidation of the phenyl-methyl group. Other, more minor metabolites included the pyridine N-oxide P36 and P50, resulting from degradation of the imidazole. All of the metabolites identified in humans were also observed in one or more of the animal species, employed for preclinical safety studies, with the exception of the minor fecal metabolites P38 (pyridine- + pyrimidine-N-oxide) and P40 (pyridine-N-oxide). In comparison to the parent nilotinib, which inhibits the BCR-ABL and KIT tyrosine kinases with mean cellular IC50 values of 20 and 217 nM, only P41.6 (19 and 284 nM), P42.1 (256 and 714 nM) and P50 (39 and 67 nM) exhibited kinase inhibition at concentrations < 2200 nM. In addition, none of the metabolites showed substantial activity at concentrations < 3000 nM against non-kinase targets. Conclusion Following oral administration of nilotinib to humans the predominant circulating species was the parent drug, with >15 minor and trace metabolites being identified. Given their in vitro potencies and target profiles, none of the metabolites are expected to contribute to the in vivo pharmacology of the parent nilotinib. This data further distinguishes the profile of nilotinib from other TKIs used for the treatment of CML. Disclosures: Manley: Novartis Pharmaceuticals: Employment. Sheng:Novartis Pharmaceuticals: Employment. Tran:Novartis Pharmaceuticals: Employment. Kagan:Novartis Pharmaceuticals: Employment.


2018 ◽  
Vol 20 (4) ◽  
Author(s):  
Alexandros Kourentas ◽  
Maria Vertzoni ◽  
Vicky Barmpatsalou ◽  
Patrick Augustijns ◽  
Stefania Beato ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Harkiran Kaur ◽  
Gurpreet Kaur

Polyphenols constitute a family of natural substances distributed widely in plant kingdom. These are produced as secondary metabolites by plants and so far 8000 representatives of this family have been identified. Recently, there is an increased interest in the polyphenols because of the evidence of their role in prevention of degenerative diseases such as neurodegenerative diseases, cancer, and cardiovascular diseases. Although a large number of drugs are available in the market for treatment of these diseases, however, the emphasis these days is on the exploitation of natural principles derived from plants. Most polyphenols show low in vivo bioavailability thus limiting their application for oral drug delivery. This low bioavailability could be associated with low aqueous solubility, first pass effect, metabolism in GIT, or irreversible binding to cellular DNA and proteins. Therefore, there is a need to devise strategies to improve oral bioavailability of polyphenols. Various approaches like nanosizing, self-microemulsifying drug delivery systems (SMEDDS), microencapsulation, complexation, and solid dispersion can be used to increase the bioavailability. This paper will highlight the various methods that have been employed till date for the solubility enhancement of various polyphenols so that a suitable drug delivery system can be formulated.


2019 ◽  
Vol 31 (4) ◽  
pp. 751-759 ◽  
Author(s):  
Sabitri Bindhani ◽  
S. Mohapatra ◽  
R.K. Kar

In recent years, nearly 40 % newer drugs compounds are hydrophobic in nature, which is a major challenge now-a-days for oral drug delivering due to low aqueous solubility. Lipid based drug delivery system is one of the favourable approach for poorly soluble compounds which can improve the drug absorption and oral bioavailability. Due to ion-pairing with appropriate surfactant and co-surfactant the macromolecular drug molecular oil droplet being found in the gut flow oral absorption which sufficiently stable towards lipase. Due to the formation of emulsified drug in micron level, it can efficiently endow the oral bioavailability. Several comprehensive papers have been published in the literature illustration diverse type of lipid based formulation with recent advancements. This article is based on an exhaustive and updated review on newer technology which out line an explicit discussion on its formulations and industrial scale up.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1175
Author(s):  
Milica Markovic ◽  
Moran Zur ◽  
Inna Ragatsky ◽  
Sandra Cvijić ◽  
Arik Dahan

Biopharmaceutical classification system (BCS) class IV drugs (low-solubility low-permeability) are generally poor drug candidates, yet, ~5% of oral drugs on the market belong to this class. While solubility is often predictable, intestinal permeability is rather complicated and highly dependent on many biochemical/physiological parameters. In this work, we investigated the solubility/permeability of BCS class IV drug, furosemide, considering the complexity of the entire small intestine (SI). Furosemide solubility, physicochemical properties, and intestinal permeability were thoroughly investigated in-vitro and in-vivo throughout the SI. In addition, advanced in-silico simulations (GastroPlus®) were used to elucidate furosemide regional-dependent absorption pattern. Metoprolol was used as the low/high permeability class boundary. Furosemide was found to be a low-solubility compound. Log D of furosemide at the three pH values 6.5, 7.0, and 7.5 (representing the conditions throughout the SI) showed a downward trend. Similarly, segmental-dependent in-vivo intestinal permeability was revealed; as the intestinal region becomes progressively distal, and the pH gradually increases, the permeability of furosemide significantly decreased. The opposite trend was evident for metoprolol. Theoretical physicochemical analysis based on ionization, pKa, and partitioning predicted the same trend and confirmed the experimental results. Computational simulations clearly showed the effect of furosemide’s regional-dependent permeability on its absorption, as well as the critical role of the drug’s absorption window on the overall bioavailability. The data reveals the absorption window of furosemide in the proximal SI, allowing adequate absorption and consequent effect, despite its class IV characteristics. Nevertheless, this absorption window so early on in the SI rules out the suitability of controlled-release furosemide formulations, as confirmed by the in-silico results. The potential link between segmental-dependent intestinal permeability and adequate oral absorption of BCS Class IV drugs may aid to develop challenging drugs as successful oral products.


Sign in / Sign up

Export Citation Format

Share Document