scholarly journals Harmaline Attenuates Voltage - Sensitive Ca2+ Currents in Neurons of the Inferior Olive

2012 ◽  
Vol 15 (5) ◽  
pp. 657 ◽  
Author(s):  
Xiping Zhan ◽  
Werner M Graf

Purpose. Harmaline is one member of a class of tremorgenic harmala alkaloids that have been implicated in neuroprotective effects and neurodegenerative disorders. It has been reported to interact with several neurotransmitter receptors as well as ion exchangers and voltage-sensitive channels. One site of harmaline action in the brain is the inferior olive (IO). Either local or systemic harmaline injection has been reported to increase spiking rate and coherence in the inferior olive and this activation is thought to produce tremor and ataxia through inferior olivary neuron activation of target neurons in the cerebellum, but the cellular mechanism is not yet known. Methods. Here, we have performed whole cell voltage-clamp and current clamp recordings from olivary neurons in brain slices derived from newborn rats. Results. We found that both transient low-voltage activated (LVA) and sustained high voltage-activated (HVA) Ca2+ currents are significantly attenuated by 0.125 – 0.25 mM harmaline applied to the bath and that this attenuation is partially reversible. In current clamp recordings, spike-afterhyperpolarization complexes were evoked by brief positive current injections. Harmaline produced a small attenuation of spike amplitude, but large spike broadening associated with attenuation of the fast and medium afterhyperpolarization. Conclusion. Our data suggest that one mode of olivary neuron activation by harmaline involves attenuation of both HVA and LVA Ca2+ conductances and consequent attenuation of Ca2+-sensitive K+ conductances resulting in spike broadening and attenuation of the afterhyperpolarization. Both of HVA and LVA attenuation also suggests a role to regulate intracelluar Ca2+, thereby to protect neurons from apoptosis. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

Endocrinology ◽  
2007 ◽  
Vol 149 (4) ◽  
pp. 1979-1986 ◽  
Author(s):  
Justyna Pielecka-Fortuna ◽  
Zhiguo Chu ◽  
Suzanne M. Moenter

GnRH neurons play a pivotal role in the central regulation of fertility. Kisspeptin greatly increases GnRH/LH release and GnRH neuron firing activity and may be involved in estradiol feedback, but the neurobiological mechanisms for these actions are unknown. G protein-coupled receptor 54, the receptor for kisspeptin, is expressed by GnRH neurons as well as other hypothalamic neurons, suggesting both direct and indirect effects are possible. To investigate this and determine whether kisspeptin activation of GnRH neurons is estradiol sensitive, we recorded the firing rate of GnRH neurons in brain slices from adult female mice that were ovariectomized (OVX) and either treated with estradiol (E) capsules (OVX+E) or left without further treatment. Kisspeptin increased GnRH neuronal activity in a dose-dependent manner in cells from both OVX and OVX+E mice, and estradiol significantly potentiated the response. To begin to distinguish direct from indirect actions of kisspeptin, fast synaptic transmission mediated by ionotropic γ-aminobutyric acid and glutamate receptors was pharmacologically blocked (blockade). Blockade reduced GnRH response to kisspeptin in OVX+E but not in OVX mice. Actions of kisspeptin were also assessed using whole-cell voltage- and current-clamp recording in slices from OVX animals. Kisspeptin application depolarized GnRH neurons in current-clamp and generated inward current in voltage-clamp recordings, even after blocking action potential-dependent neural communication, consistent with a direct effect. Blockers of potassium channels abolished the inward current. Together our data indicate that kisspeptin activates GnRH neurons via both direct and transsynaptic mechanisms and that transsynaptic mechanisms are either enabled and/or potentiated by estradiol.


Development ◽  
1997 ◽  
Vol 124 (4) ◽  
pp. 861-870 ◽  
Author(s):  
A. Chedotal ◽  
E. Bloch-Gallego ◽  
C. Sotelo

The formation of the olivocerebellar projection is supposed to be regulated by positional information shared between pre- and postsynaptic neurons. However, experimental evidence to support this hypothesis is missing. In the chick, caudal neurons in the inferior olive project to the anterior cerebellum and rostral ones to the posterior cerebellum. We here report in vitro experiments that strongly support the existence of anteroposterior polarity cues in the embryonic cerebellum. We developed an in vitro system that was easily accessible to experimental manipulations. Large hindbrain explants of E7.5-E8 chick embryos, containing the cerebellum and its attached brainstem, were plated and studied using axonal tracing methods. In these cultures, we have shown that the normal anteroposterior topography of the olivocerebellar projection was acquired, even when the cerebellar lamella was detached from the brainstem and placed again in its original position. We also found that, following various experimental rotations of the anteroposterior axis of the cerebellum, the rostromedian olivary neurons still project to the posterior vermis and the caudolateral neurons to the anterior vermis, that now have inverted locations. Thus, the rotation of the target region results in the rotation of the projection. In addition, we have shown that the formation of the projection map could be due to the inability of rostromedian inferior olivary axons to grow in the anterior cerebellum. All these experiments strongly indicate that olivocerebellar fibers recognize within their target region polarity cues that organize their anteroposterior topography, and we suggest that Purkinje cells might carry these cues.


1997 ◽  
Vol 77 (5) ◽  
pp. 2736-2752 ◽  
Author(s):  
Yair Manor ◽  
John Rinzel ◽  
Idan Segev ◽  
Yosef Yarom

Manor, Yair, John Rinzel, Idan Segev, and Yosef Yarom. Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. J. Neurophysiol. 77: 2736–2752, 1997. The mechanism underlying subthreshold oscillations in inferior olivary cells is not known. To study this question, we developed a single-compartment, two-variable, Hodgkin-Huxley-like model for inferior olive neurons. The model consists of a leakage current and a low-threshold calcium current, whose kinetics were experimentally measured in slices. Depending on the maximal calcium and leak conductances, we found that a neuron model's response to current injection could be of four qualitatively different types: always stable, spontaneously oscillating, oscillating with injection of current, and bistable with injection of current. By the use of phase plane techniques, numerical integration, and bifurcation analysis, we subdivided the two-parameter space of channel densities into four regions corresponding to these behavioral types. We further developed, with the use of such techniques, an empirical rule of thumb that characterizes whether two cells when coupled electrically can generate sustained, synchronized oscillations like those observed in inferior olivary cells in slices, of low amplitude (0.1–10 mV) in the frequency range 4–10 Hz. We found that it is not necessary for either cell to be a spontaneous oscillator to obtain a sustained oscillation. On the other hand, two spontaneous oscillators always form an oscillating network when electrically coupled with any arbitrary coupling conductance. In the case of an oscillating pair of electrically coupled nonidentical cells, the coupling current varies periodically and is nonzero even for very large coupling values. The coupling current acts as an equalizing current to reconcile the differences between the two cells' ionic currents. It transiently depolarizes one cell and/or hyperpolarizes the other cell to obtain the regenerative response(s) required for the synchronized oscillation. We suggest that the subthreshold oscillations observed in the inferior olive can emerge from the electrical coupling between neurons with different channel densities, even if the inferior olive nucleus contains no or just a small proportion of spontaneously oscillating neurons.


1999 ◽  
Vol 277 (3) ◽  
pp. R887-R893 ◽  
Author(s):  
H. S. Ghai ◽  
L. T. Buck

We tested the effect of anoxia, a “mimic” turtle artificial cerebrospinal fluid (aCSF) consisting of high Ca2+ and Mg2+ concentrations and low pH and adenosine perfusions, on whole cell conductance ( G w) in turtle brain slices using a whole cell voltage-clamp technique. With EGTA in the recording electrode, anoxic or adenosine perfusions did not change G w significantly (values range between 2.15 ± 0.24 and 3.24 ± 0.56 nS). However, perfusion with normoxic or anoxic mimic aCSF significantly decreased G w. High [Ca2+] (4.0 or 7.8 mM) perfusions alone could reproduce the changes in G w found with the mimic perfusions. With the removal of EGTA from the recording electrode, G wdecreased significantly during both anoxic and adenosine perfusions. The A1-receptor agonist N 6-cyclopentyladenosine reduced G w in a dose-dependent manner, whereas the A1-receptor specific antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked both the adenosine- and anoxic-mediated changes in G w. These data suggest a mechanism involving A1-receptor-mediated changes in intracellular [Ca2+] that result in acute changes in G w with the onset of anoxia.


2020 ◽  
Vol 14 ◽  
Author(s):  
Kevin Dorgans ◽  
Bernd Kuhn ◽  
Marylka Yoe Uusisaari

Voltage imaging with cellular resolution in mammalian brain slices is still a challenging task. Here, we describe and validate a method for delivery of the voltage-sensitive dye ANNINE-6plus (A6+) into tissue for voltage imaging that results in higher signal-to-noise ratio (SNR) than conventional bath application methods. The not fully dissolved dye was injected into the inferior olive (IO) 0, 1, or 7 days prior to acute slice preparation using stereotactic surgery. We find that the voltage imaging improves after an extended incubation period in vivo in terms of labeled volume, homogeneous neuropil labeling with saliently labeled somata, and SNR. Preparing acute slices 7 days after the dye injection, the SNR is high enough to allow single-trial recording of IO subthreshold oscillations using wide-field (network-level) as well as high-magnification (single-cell level) voltage imaging with a CMOS camera. This method is easily adaptable to other brain regions where genetically-encoded voltage sensors are prohibitively difficult to use and where an ultrafast, pure electrochromic sensor, like A6+, is required. Due to the long-lasting staining demonstrated here, the method can be combined, for example, with deep-brain imaging using implantable GRIN lenses.


2003 ◽  
Vol 90 (2) ◽  
pp. 1182-1192 ◽  
Author(s):  
Mei Shao ◽  
June C. Hirsch ◽  
Christian Giaume ◽  
Kenna D. Peusner

The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibular reflexes. In 16-day embryos, the application of glutamate receptor antagonists abolished the postsynaptic responses generated on vestibular-nerve stimulation, but spontaneous synaptic activity was largely unaffected. Here, spontaneous synaptic activity was characterized in principal cells from brain slices at E16 using whole cell voltage-clamp recordings. With KCl electrodes, the frequency of spontaneous inward currents was 3.1 Hz at –60 mV, and the reversal potential was +4 mV. Cs-gluconate pipette solution allowed the discrimination of glycine/GABAA versus glutamate receptor-mediated events according to their different reversal potentials. The ratio for spontaneous excitatory to inhibitory events was about 1:4. Seventy-four percent of the outward events were GABAA, whereas 26% were glycine receptor-mediated events. Both pre- and postsynaptic GABAB receptor effects were shown, with presynaptic GABAB receptors inhibiting 40% of spontaneous excitatory postsynaptic currents (sEPSCs) and 53% of spontaneous inhibitory postsynaptic currents (sIPSCs). With TTX, the frequency decreased ∼50% for EPSCs and 23% for IPSCs. These data indicate that the spontaneous synaptic activity recorded in the principal cells at E16 is primarily inhibitory, action potential-independent, and based on the activation of GABAA receptors that can be modulated by presynaptic GABAB receptors.


1995 ◽  
Vol 269 (6) ◽  
pp. C1394-C1401 ◽  
Author(s):  
H. K. Lee ◽  
C. W. Shuttleworth ◽  
K. M. Sanders

The mechanism of tachykinin-induced excitation was studied in isolated colonic muscle cells and intact muscle strips. In whole cell voltage-clamp studies performed at 33 degrees C, neurokinin A (NKA) and substance P (SP) reduced L-type Ca2+ current. NKA and SP activated a cationic current that reversed near 0 mV. This current (INKA or ISP, respectively) had properties similar to the acetylcholine (ACh)-activated nonselective cation conductance (IACh), activated by muscarinic stimulation in other gastrointestinal smooth muscle cells. INKA and ISP were decreased when external Na+ was reduced. In contrast to IACh, INKA and ISP were not facilitated by increases in internal Ca2+, but little or no current was activated by these peptides when extracellular Ca2+ was low. INKA (10(-7) M) and ISP (10(-5) M) were blocked by Cd2+ (5 x 10(-4) M), quinine (10(-3) M), and the tachykinin-receptor antagonist [D-Pro2,D-Trp7,9]SP (10(-5) M). Current clamp recordings and intracellular recordings of intact tissues showed that NKA and SP depolarized the cell membrane, which is consistent with the activation of a nonselective cation conductance. These data suggest that a primary mechanism of the tachykinins is to activate a nonselective cation conductance that leads to depolarization. The increase in Ca2+ entry due to tachykinin stimulation appears to be secondary to the activation of the nonselective cation conductance.


1996 ◽  
Vol 271 (2) ◽  
pp. C658-C665 ◽  
Author(s):  
W. H. Zhu ◽  
L. Conforti ◽  
M. F. Czyzyk-Krzeska ◽  
D. E. Millhorn

The effects of hypoxia on K+ current (IK), resting membrane potential, and cytosolic free Ca2+ in rat pheochromocytoma (PC-12) cells were studied. Whole cell voltage- and current-clamp experiments were performed to measure IK and membrane potential, respectively. Cytosolic free Ca2+ level was measured using the Ca(2+)-sensitive fluorescent dye fura 2. Depolarizing voltage steps to +50 mV from a holding potential of -90 mV elicited a slowly inactivating, tetraethylammonium chloride-sensitive, and Ca(2+)-insensitive IK that was reversibly inhibited by reduced O2 tension. Graded reduction in PO2 (from 150 to 0 mmHg) induced a graded inhibition of O2-sensitive IK [IK(O2)] up to 46% at 0 mmHg. Moreover, hypoxia induced a 19-mV membrane depolarization and a twofold increase in cytosolic free Ca2+. In Ca(2+)-free condition, inhibition of IK(O2) induced an 8-mV depolarization, suggesting that inhibition of IK(O2) was responsible for initiating depolarization. The effect of reduced PO2 on the current-voltage relationship showed a reduction of outward current and a 14-mV shift in the reversal potential comparable with the amount of depolarization measured in current clamp experiments. Neither Ca(2+)-activated IK nor inwardly rectifying IK are responsible for the hypoxia-induced depolarization. In conclusion, PC-12 cells express an IK(O2), inhibition of which leads to membrane depolarization and increased intracellular Ca2+, making the PC-12 clonal cell line a useful model for studying the molecular and biophysical mechanisms that mediate O2 chemosensitivity.


1993 ◽  
Vol 265 (3) ◽  
pp. C720-C727 ◽  
Author(s):  
J. W. Stelling ◽  
T. J. Jacob

Single pigmented epithelial cells from the ciliary body of the eye were studied using the whole cell voltage and current clamp, permeabilized patch recording, and patch-clamp recording. These cells can produce two types of oscillation. Both are slow, with a period in the range of 1-2 min; one has a low amplitude and oscillates between -60 and -80 mV, and the second is larger, with biphasic hyperpolarizing and depolarizing phases. The latter was seen when the membrane potential was driven negative by a constant current and results from the interplay between the inward rectifier K+ channel and a hyperpolarizing-activated cation channel. The hyperpolarization is caused by the constant current acting on a decreasing conductance as the inward rectifier inactivates, and the depolarization drive results from the activation of cation channels. It is suggested that the constant current would be provided by the Na+ pump in vivo, and such an interplay of channels and pumps could drive the uptake of cations in absorbing epithelia or provide an increased driving force for chloride exit in secretory epithelia.


2003 ◽  
Vol 90 (2) ◽  
pp. 771-779 ◽  
Author(s):  
Chaelon I. O. Myme ◽  
Ken Sugino ◽  
Gina G. Turrigiano ◽  
Sacha B. Nelson

To better understand regulation of N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor complements across the cortex, and to investigate NMDA receptor (NMDAR)-based models of persistent activity, we compared NMDA/AMPA ratios in prefrontal (PFC) and visual cortex (VC) in rat. Whole cell voltage-clamp responses were recorded in brain slices from layer 2/3 pyramidal cells of the medial PFC and VC of rats aged p16–p21. Mixed miniature excitatory postsynaptic currents (mEPSCs) having AMPA receptor (AMPAR)- and NMDAR-mediated components were isolated in nominally 0 Mg2+ ACSF. Averaged mEPSCs were well-fit by double exponentials. No significant differences in the NMDA/AMPA ratio (PFC: 27 ± 1%; VC: 28 ± 3%), peak mEPSC amplitude (PFC: 19.1 ± 1 pA; VC: 17.5 ± 0.7 pA), NMDAR decay kinetics (PFC: 69 ± 8 ms; VC: 67 ± 6 ms), or degree of correlation between NMDAR- and AMPAR-mediated mEPSC components were found between the areas (PFC: n = 27; VC: n = 28). Recordings from older rats (p26–29) also showed no differences. EPSCs were evoked extracellularly in 2 mM Mg2+ at depolarized potentials; although the average NMDA/AMPA ratio was larger than that observed for mEPSCs, the ratio was similar in the two regions. In nominally 0 Mg2+ and in the presence of CNQX, spontaneous activation of NMDAR increased recording noise and produced a small tonic depolarization which was similar in both areas. We conclude that this basic property of excitatory transmission is conserved across PFC and VC synapses and is therefore unlikely to contribute to differences in firing patterns observed in vivo in the two regions.


Sign in / Sign up

Export Citation Format

Share Document