scholarly journals Development, Characterization, and Pharmacokinetic Evaluation of a CRV431 Loaded Self-Microemulsifying Drug Delivery System

2018 ◽  
Vol 21 (1s) ◽  
pp. 335s-348s ◽  
Author(s):  
Daniel J Trepanier ◽  
Daren R Ure ◽  
Robert Thomas Foster

PURPOSE: The objective of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) formulation for the oral delivery of CRV431, a non-immunosuppressive analogue of cyclosporine A. Relative to cyclosporine A, CRV431 is poorly soluble in lipid solvents and thusly presents a challenge for the development of a formulation of sufficient oral bioavailability for clinical use. METHODS: The solubility of CRV431, a cyclosporine derivative, was determined in a range of commonly used surfactants, oils and co-solvents. A pseudo-ternary phase diagram was constructed from the most soluble excipients and prototype formulations, SERIES 1 and SERIES 2 were developed. The pharmacokinetics, following single oral doses of 1 and 3 mg/kg of CRV431 SMEDDS, was studied in healthy human volunteers using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). RESULTS: The maximum drug load for the SERIES 1 formulations was less than 40 mg/ml. Manipulation of the excipient ratios allowed for the development of SERIES 2 formulations, which had higher drug loading capacity and stability for CRV431 compared to SERIES 1. Further improvements allowed for the development of an optimized SMEDDS formulation containing up to 90 mg/ml CRV431 and which generated a microemulsion mean particle size of 25 nm when dispersed into aqueous media. The pharmacokinetics of the optimized CRV431 SMEDDS displayed excellent total body exposure and dose-proportional effects in humans, and high drug levels in the liver of rats. CONCLUSIONS: The developed SMEDDS formulation should allow for effective clinical development of CRV431, targeted to the treatment of liver diseases including hepatitis B (HBV), fibrosis, and hepatocellular carcinoma.

2021 ◽  
Vol 11 (2) ◽  
pp. 95-102
Author(s):  
Mohammed Waseem A ◽  
Ajin P Kurian ◽  
Dhanapal Y

Objective: The purpose of this study was to develop salmeterol, fluticasone nano-lipid carriers to estimate as potentials of oral delivery system for poorly water soluble drugs. Nano-lipid carriers applied to chronomodulated pulsatile drug delivery system maintain the concentration level by releasing the drug at predetermined time interval throughout the management of asthma. Method: The particle size analysis revealed that all the formulations were within the nanometer range of 150.0±2.4nm. Percentage of entrapment efficiency and drug loading were found to be 69.5±4.4 - 85.3±1.3 and 9.358±2.2-10.45±8.1, respectively. The SLM-FCN nano-lipid carrier’s optimized formulation showed spherical morphology with smooth surface under the transmission electron microscope (TEM), the crystalline characterization of drug in NLC was investigated by X-ray diffraction and differential scanning calorimetric (DSC). The ex-vivo permeation study showed many folds increment in the SLM-FCN NLCs compared to powder SLM-FCN 96.0±2.55 and pulsing plugs in-vivo drug released effectively in pre-determine time intervals. Conclusion: The progression concludes that chronomodulated programming pulsatile release was achieved with modified pulsing bilayerd plugged of salmeterol, fluticasone propionate NLCs, formulation remarkably improved oral bioavailability. we promise that finding in this investigations suggest practicability of the dosage form system can be taken after at bedtime then it will be delivered in the early morning which maintains the drug concentration throughout to control asthma.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1412
Author(s):  
Murtada A. Oshi ◽  
Juho Lee ◽  
Jihyun Kim ◽  
Nurhasni Hasan ◽  
Eunok Im ◽  
...  

Cyclosporine A (CsA) is a potent immunosuppressant for treating ulcerative colitis (UC). However, owing to severe systemic side effects, CsA application in UC therapy remains limited. Herein, a colon-targeted drug delivery system consisting of CsA crystals (CsAc)-loaded, Eudragit S 100 (ES)-coated alginate microparticles (CsAc-EAMPs) was established to minimize systemic side effects and enhance the therapeutic efficacy of CsA. Homogeneously-sized CsAs (3.1 ± 0.9 μm) were prepared by anti-solvent precipitation, followed by the fabrication of 47.1 ± 6.5 μm-sized CsAc-EAMPs via ionic gelation and ES coating. CsAc-EAMPs exhibited a high drug loading capacity (48 ± 5%) and a CsA encapsulation efficacy of 77 ± 9%. The in vitro drug release study revealed that CsA release from CsAc-EAMPs was suppressed under conditions simulating the stomach and small intestine, resulting in minimized systemic absorption and side effects. Following exposure to the simulated colon conditions, along with ES dissolution and disintegration of alginate microparticles, CsA was released from CsAc-EAMPs, exhibiting a sustained-release profile for up to 24 h after administration. Given the effective colonic delivery of CsA molecules, CsAc-EAMPs conferred enhanced anti-inflammatory activity in mouse model of dextran sulfate sodium (DSS)-induced colitis. These findings suggest that CsAc-EAMPs is a promising drug delivery system for treating UC.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1388
Author(s):  
Aristote B. Buya ◽  
Romano Terrasi ◽  
Jérémie K. Mbinze ◽  
Giulio G. Muccioli ◽  
Ana Beloqui ◽  
...  

Low aqueous solubility and poor oral bioavailability are limiting factors in the oral delivery of voxelotor, an antisickling agent. To overcome these limitations, a voxelotor self-nanoemulsifying drug delivery system was developed. Various oils, surfactants, and cosurfactants were screened for their solubilization potential for the drug. The area of nanoemulsification was identified using a ternary phase diagram. An experimental mixture design and a desirability function were applied to select SNEDDSs that contain a maximum amount of lipids and a minimum amount of surfactant, and that possess optimal emulsification properties (i.e., droplet sizes, polydispersity index (PDI), emulsification time, and transmittance percentage). The optimized SNEDDS formulation was evaluated for the self-emulsifying time (32 s), droplet size (35 nm), and zeta potential (−8 mV). In vitro dissolution studies indicated a 3.1-fold improvement in drug solubility from the optimized SNEDDS over pure drug powder. After 60 min of in vitro lipolysis, 88% of the voxelotor loaded in the SNEDDS remained in the aqueous phase. Cytotoxicity evaluation, using Caco-2 cells, indicated the safety of the formulation at 0.9 mg/mL. The transport of the voxelotor SNEDDS across Caco-2 monolayers was significantly enhanced compared to that of the free drug. Compared to the drug suspension, the developed SNEDDS enhanced the oral bioavailability (1.7-fold) of voxelotor in rats. The results suggest that further development of SNEDDSs for the oral delivery of voxelotor is needed.


2020 ◽  
Vol 10 (1) ◽  
pp. 38-53 ◽  
Author(s):  
Sivaram Nallamolu ◽  
Vijaya R. Jayanti ◽  
Mallikarjun Chitneni ◽  
Liew Y. Khoon ◽  
Prashant Kesharwani

Objective: Andrographolide has potent anticancer and antimicrobial activity; however, its clinical application has been limited due to its poor water solubility as well as lack of appropriate formulation. The objective of this investigation was to formulate Self–Micro Emulsifying Drug Delivery System (SMEDDS) of andrographolide and explore its oral drug delivery aptitudes. Methods: Andrographolide SMEDDS was optimized by ternary phase approach and studied for various in vitro characteristics: Particle size, electron microscopy, polydispersity index, surface charge, dilution effect, pH stability, freeze-thaw effect, dissolution profile and stability studies. Further, antimicrobial and cytotoxic performance of andrographolide SMEDDS were evaluated in MCF–7 breast cancer cell lines and methicillin-resistant microorganisms, respectively. Results: An optimized SMEDDS formulation of andrographolide was successfully prepared and evaluated for its drug delivery potential. The solubility of andrographolide in the developed SMEDDS formulation was increased significantly, and the drug loading was enough for making this drug clinically applicable. The andrographolide SMEDDS formulation competitively inhibited the growth of microorganisms and showed enhanced anti–microbial activity against MRSA microorganisms. Conclusion: The SMEDDS strategy represents one of the best approaches to deliver andrographolide via oral route, while resolving its solubility limitations.


Author(s):  
Vikrant P Wankhade ◽  
Nivedita S Kale ◽  
K.K Tapar

Many chemical entities and nutraceuticals are poor water soluble and show high lipophilicity. It’s difficult to formulate them into oral formulation because of its low aqueous solubility which ultimately affects bioavailability. To enhance the bioavailability of such drugs compounds, self microemulsifying drug delivery system is the reliable drug delivery system. In this system the drug is incorporated in the isotropic system and formulated as unit dosage form. Self microemulsifying drug delivery system is the novel emulsified system composed of anhydrous isotropic mixture of oils, surfactant, and co solvent and sometimes co surfactant. Drug is directly dispersed into the entire gastro intestinal tract with continuous peristaltic movement and drug is available in the solution form of microemulsion, absorbed through lymphatic system and bypasses the dissolution step. Hence they increase the patient compliance. The excipients are selected on basis of construction of ternary phase diagram. Self micro-emulsifying drug delivery system is very useful for drug in which drug dissolution is rate limiting step. This review describes the novel approaches and evaluation parameters of the self microemulsifying drug delivery system towards different classic drugs, proteins-peptides, and nutraceuticals in various oral microemulsion compositions and microstructures.


Author(s):  
Prabhat Kumar Sahoo ◽  
Neha S.L ◽  
Arzoo Pannu

Lipids are used as vehicles for the preparation of various formulations prescribed for administrations, including emulsions, ointments, suspension, tablets, and suppositories. The first parental nano-emulsion was discovered from the 1950s when it was added to the intravenous administration of lipid and lipid-soluble substances. Lipid-based drug delivery systems are important nowadays. Solid nanoparticles (SLN) and Nanostructured lipid carriers (NLC) are very proficient due to the ease of production process, scale-up capability, bio-compatibility, the biodegradability of formulation components and other specific features of the proposed route. The administration or nature of the materials must be loaded into these delivery systems. The main objectives of this review are to discuss an overview of second-generation nanoparticles, their limitations, structures, and route of administration, with emphasis on the effectiveness of such formulations. NLC is the second generation of lipid nanoparticles having a structure like nanoemulsion. The first generation of nanoparticles was SLN. The difference between both of them is at its core. Both of them are a colloidal carrier in submicron size in the range of 40-1000 nm. NLC is the most promising novel drug delivery system over the SLN due to solving the problem of drug loading and drug crystallinity. Solid and liquid lipids combination in NLC formation, improve its quality as compare to SLN. NLC has three types of structures: random, amorphous, and multiple. The random structure containing solid-liquid lipids and consisting crystal and the liquid lipid irregular in shape; thereby enhance the ability of the lipid layer to pass through the membrane. The second is the amorphous structure. It is less crystalline in nature and can prevent the leakage of the loaded drug. The third type is multiple structures, which have higher liquid lipid concentrations than other types. The excipients used to form the NLC are bio-compatible, biodegradable and non-irritating, most of which can be detected using GRAS. NLC is a promising delivery system to deliver the drug through pulmonary, ocular, CNS, and oral route of administration. Various methods of preparation and composition of NLC influence its stability Parameters. In recent years at the educational level, the potential of NLC as a delivery mechanism targeting various organs has been investigated in detail.


2014 ◽  
Vol 10 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Maulick Chopra ◽  
Usha Y. Nayak ◽  
Aravind Kumar Gurram ◽  
M. Sreenivasa Reddy ◽  
K.B. Koteshwara

Author(s):  
Neeraj Singh ◽  
Shweta Rai ◽  
Sankha Bhattacharya

Background: About two-third of new drugs reveal low solubility in water due to that; it becomes difficult for formulation scientists to develop oral solid dosage forms with a pharmaceutically acceptable range of therapeutic activity. In such cases, S-SMEEDS are the best carrier used universally for the delivery of hydrophobic drugs. SEDDS were also used, but due to its limitations, S-SMEDDS used widely. These are the isotropic mixtures of oils, co-solvents, and surfactants. S-SMEDDS are physically stable, easy to manufacture, easy to fill in gelatin capsules as well as improves the drug bioavailability by releasing the drug in the emulsion form to the gastrointestinal tract and make smooth absorption of the drug through the intestinal lymphatic pathway. Methods: We took on the various literature search related to our review, including the peer-reviewed research, and provided a conceptual framework to that. Standard tools are used for making the figures of the paper, and various search engines are used for the literature exploration.In this review article the author discussed the importance of S-SMEDDS, selection criteria for excipients, pseudo-ternary diagram, mechanism of action of S-SMEDDS, solidification techniques used for S-SMEDDS, Characterization of SEDDS and S-SMEDDS including Stability Evaluation of both and future prospect concluded through recent findings on S-SMEDDS on Cancer as well as a neoteric patent on S-SMEDDS Results: Many research papers discussed in this review article, from which it was found that the ternary phase diagram is the most crucial part of developing the SMEDDS. From the various research findings, it was found that the excipient selection is the essential step which decides the strong therapeutic effect of the formulation. The significant outcome related to solid-SMEDDS is less the globule size, higher would be the bioavailability. The adsorption of a solid carrier method is the most widely used method for the preparation of solid-SMEDDS. After review of many patents, it is observed that the solid-SMEDDS have a strong potential for targeting and treatment of a different type of Cancer due to their property to enhance permeation and increased bioavailability. Conclusion: S-SMEEDS are more acceptable pharmaceutically as compare to SEDDS due to various advantages over SEDDS viz stability issue is prevalent with SEDDS. A number of researchers had formulated S-SMEDDS of poorly soluble drugs and founded S-SMEDDS as prospective for the delivery of hydrophobic drugs for the treatment of Cancer. S-SMEEDS are grabbing attention, and the patentability on S-SMEDDS is unavoidable, these prove that S-SMEEDS are widely accepted carriers. These are used universally for the delivery of the hydrophilic drugs and anticancer drugs as it releases the drug to the gastrointestinal tract and enhances the systemic absorption. Abstract: Majority of active pharmaceutical ingredients (API) shows poor aqueous solubility, due to that drug delivery of the API to the systemic circulation becomes difficult as it has low bioavailability. The bioavailability of the hydrophobic drugs can be improved by the Self-emulsifying drug delivery system (SEDDS) but due to its various limitations, solid self-micro emulsifying drug delivery systems (S-SMEDDS) are used due to its advantages over SEDDS. S-SMEDDS plays a vital role in improving the low bioavailability of poorly aqueous soluble drugs. Hydrophobic drugs can be easily loaded in these systems and release the drug to the gastrointestinal tract in the form of fine emulsion results to In-situ solubilisation of the drug. In this review article the author's gives an overview of the solid SMEDSS along with the solidification techniques and an update on recent research and patents filled for Solid SMEDDS.


Nanoscale ◽  
2021 ◽  
Author(s):  
Sanjay Pal ◽  
Vijay Soni ◽  
Sandeep Kumar ◽  
Somesh K Jha ◽  
Nihal Medatwal ◽  
...  

We present a non-immunogenic, injectable, low molecular weight, amphiphilic hydrogel-based drug delivery system (TB-Gel) that can entrap a cocktail of four front-line antitubercular drugs isoniazid, rifampicin, pyrazinamide, and ethambutol. We...


Sign in / Sign up

Export Citation Format

Share Document