scholarly journals Effect of Quercetin and Intermittent and Continuous Exercise on Catalase, Superoxide dismutase, and Malondialdehyde in the Heart of Rats with Colon Cancer

Author(s):  
Behrooz Talaei ◽  
Mohammad Panji ◽  
Fatemeh Nazari Robati ◽  
Sajjad Tezerji

Background: Colorectal cancer is the fourth leading cause of death globally, and the second most common cancer in Europe. About 8% of all cancer-related deaths occur due to colorectal cancer, and the highest prevalence has been reported in Asia and Eastern Europe. Methods: In this experimental study, 80 rats were divided into two groups of cases (n=70) and controls (n=10). Colorectal cancer was induced weekly in rats by subcutaneous injection of 15 mg/kg Azoxymethane. The rats were then divided into 7 experimental subgroups of patients, saline, quercetin, intermittent exercise, continuous exercise, quercetin plus intermittent, and quercetin plus continuous exercise. Oxidative stress biomarkers, including superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were measured in the rats’ heart tissue by the ELISA method. Data were analyzed using ANOVA by SPSS software. Results: Oxidative stress in heart cells increased due to colorectal cancer. Quercetin alone or in combination with exercise significantly increased mean levels of CAT and SOD in the heart tissue of rats compared with patient and saline groups (P<0.0001). In contrast, the MDA level was significantly decreased (P<0.05). Conclusion: Colorectal cancer increased the oxidative stress in cardiac cells. Quercetin alone improved oxidative stress in cardiac tissue, and its combination with exercise was more effective.

Author(s):  
W.G. Wier

A fundamentally new understanding of cardiac excitation-contraction (E-C) coupling is being developed from recent experimental work using confocal microscopy of single isolated heart cells. In particular, the transient change in intracellular free calcium ion concentration ([Ca2+]i transient) that activates muscle contraction is now viewed as resulting from the spatial and temporal summation of small (∼ 8 μm3), subcellular, stereotyped ‘local [Ca2+]i-transients' or, as they have been called, ‘calcium sparks'. This new understanding may be called ‘local control of E-C coupling'. The relevance to normal heart cell function of ‘local control, theory and the recent confocal data on spontaneous Ca2+ ‘sparks', and on electrically evoked local [Ca2+]i-transients has been unknown however, because the previous studies were all conducted on slack, internally perfused, single, enzymatically dissociated cardiac cells, at room temperature, usually with Cs+ replacing K+, and often in the presence of Ca2-channel blockers. The present work was undertaken to establish whether or not the concepts derived from these studies are in fact relevant to normal cardiac tissue under physiological conditions, by attempting to record local [Ca2+]i-transients, sparks (and Ca2+ waves) in intact, multi-cellular cardiac tissue.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 386
Author(s):  
Ana Santos ◽  
Yongjun Jang ◽  
Inwoo Son ◽  
Jongseong Kim ◽  
Yongdoo Park

Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.


2012 ◽  
Vol 59 (4) ◽  
Author(s):  
Joanna Katarzyna Strzelczyk ◽  
Tomasz Wielkoszyński ◽  
Łukasz Krakowczyk ◽  
Brygida Adamek ◽  
Marzena Zalewska-Ziob ◽  
...  

Oxidative stress is one of several factors which contribute to the development of colorectal carcinogenesis. The aim of the study was an assessment of the activity of antioxidant enzymes in tumour and corresponding normal distal mucosa in a group of patients with colorectal adenocarcinoma. Samples of tumour and corresponding normal mucosa were obtained during a resection of colorectal cancer from 47 patients aged between 26 and 82 years. The average distance of corresponding normal distal mucosa from the tumour was 4.49 cm. Activities of antioxidant enzymes: superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione S-transferase (GST), and catalase (CAT) were measured in tissue homogenates. The patients were grouped according to the tumour stage (Duke's staging), grading, localization, and size of tumour, as well as age and sex. Statistical analysis was performed. The activity of SOD and GPx was considerably increased, while the activity of GST decreased significantly in tumour as compared with normal mucosa. GR activity in colorectal cancer was evidently higher in tumours of proximal location compared with the distal ones. The distance of corresponding normal distal mucosa from the tumour was analyzed and related to all assayed parameters. A decreased GST activity was observed in corresponding normal mucosa more than 5 cm distant from the tumour in patients with CD Duke's stage. The higher activity of superoxide dismutase and glutathione peroxidase in tumour compared to corresponding normal mucosa could indicate higher oxidative stress in colorectal adenocarcinoma cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Olufunke Olorundare ◽  
Adejuwon Adeneye ◽  
Akinyele Akinsola ◽  
Sunday Soyemi ◽  
Alban Mgbehoma ◽  
...  

Trastuzumab (TZM) is a humanized monoclonal antibody that has been approved for the clinical management of HER2-positive metastatic breast and gastric cancers but its use is limited by its cumulative dose and off-target cardiotoxicity. Unfortunately, till date, there is no approved antidote to this off-target toxicity. Therefore, an acute study was designed at investigating the protective potential and mechanism(s) of CVE and IGE in TZM-induced cardiotoxicity utilizing cardiac enzyme and oxidative stress markers and histopathological endpoints. 400 mg/kg/day CVE and IGE dissolved in 5% DMSO in sterile water were investigated in Wistar rats injected with 2.25 mg/kg/day/i.p. route of TZM for 7 days, using serum cTnI and LDH, complete lipid profile, cardiac tissue oxidative stress markers assays, and histopathological examination of TZM-intoxicated heart tissue. Results showed that 400 mg/kg/day CVE and IGE profoundly attenuated increases in the serum cTnI and LDH levels but caused no significant alterations in the serum lipids and weight gain pattern in the treated rats. CVE and IGE profoundly attenuated alterations in the cardiac tissue oxidative stress markers’ activities while improving TZM-associated cardiac histological lesions. These results suggest that CVE and IGE could be mediating its cardioprotection via antioxidant, free radical scavenging, and antithrombotic mechanisms, thus, highlighting the therapeutic potentials of CVE and IGE in the management of TZM-mediated cardiotoxicity.


2021 ◽  
Vol 18 (4) ◽  
pp. 713-719
Author(s):  
Yan Huang ◽  
Hongsheng Gang ◽  
Bitao Liang ◽  
Ming Li

Purpose: To investigate the therapeutic effect of 3, 4-dihydroxyphenylethanol (DOPET) on cadmium (Cd) induced cardiotoxicity in murine model. Methods: Four groups of rats were used in this study (n = 6). The rats were treated with DOPET and Cd for 28 days. Biochemical parameters were determined in plasma and heart tissue homogenates. Results: Cadmium (Cd) significantly increased lipid peroxidation and protein carbonylation. However, DOPET treatment significantly attenuated Cd-induced oxidative stress. Cd intoxication significantly increased cardiac markers {creatine kinase, lactate dehydrogenase (LDH) and cardiac troponin-I} levels in plasma, and reduced the levels of antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase Gpx ,glutathione (GSH) and malndialdehyde (MDA) in heart tissue. These Cdinduced changes in cardiac markers and antioxidants were reversed by DOPET treatment. Cd treatment led to upregulation of protein expressions of pro-inflammatory cytokines (TNF-α and Il-6). However, DOPET supplementation brought about a decrease in the protein expressions of these cytokines. Western blot analysis revealed that Cd induced apoptosis in cardiac tissue, as was evident from alterations in protein expressions of the apoptotic inducers, Bax and cleaved caspase-3, and the anti-apoptotic factor Bcl-2. However, DOPET treatment effectively reversed Cd-induced apoptosis. Conclusion: These results indicate that DOPET exerts cardio-protective effect against Cd-induced toxicity via antioxidant, anti-inflammatory and anti-apoptotic mechanisms.


Author(s):  
Katarina Mihajlovic ◽  
Isidora Milosavljevic ◽  
Jovana Jeremic ◽  
Maja Savic ◽  
Jasmina Sretenovic ◽  
...  

Ruthenium(II) complexes offer the potential for lower toxicity compared to platinum(II) complexes. Our study aimed to compare cardiotoxicity of [Ru(Cl-tpy)(en)Cl][Cl], [Ru(Cl-tpy)(dach)Cl][Cl], [Ru(Cl-tpy)(bpy)Cl][Cl], cisplatin and saline through assessment of redox status and relative expression of apoptosis-related genes. A total of 40 Wistar albino rats were divided into five groups. Ruthenium groups received intraperitoneally single dose of complexes (4 mg/kg/week) for 4-weeks period; cisplatin group received cisplatin (4 mg/kg/week) and control group received saline (4 mL/kg/week) in the same manner as ruthenium groups. In collected blood and heart tissue samples, spectrophotometrically determination of oxidative stress biomarkers was performed. The relative expression of apoptosis-related genes (Bcl-2, Bax, and caspase-3) in hearts was examined by RT-PCR. Our results showed that systemic and cardiac pro-oxidative markers (TBARS and NO2-) were significantly lower in ruthenium groups compared to cisplatin group, while concentrations of antioxidative parameters (CAT, SOD, and GSSG) were significantly higher. Ruthenium administration led to significantly lower gene expression of Bax and caspase-3 compared to cisplatin-treated rats, while Bcl-2 remained unchanged. Applied ruthenium complexes have less pronounced potential for induction of oxidative stress-mediated cardiotoxicity compared to cisplatin. These findings may help for future studies that should clarify the mechanisms of cardiotoxicity of ruthenium-based metallodrugs.


2019 ◽  
Vol 1 (2) ◽  
pp. 68-75
Author(s):  
H R Helmi ◽  
Frans Ferdinal ◽  
Ani Retno Prijanti ◽  
Sri Widia A Jusman ◽  
Frans D Suyatna

Background: Chronic systemic hypoxia is severe environmental stress for the heart and might lead to the development of heart failure. Apelin is an endogenous peptide that has been shown to have various beneficial effects on cardiac function. Apelin appears to have a role to play in the ventricular dysfunction and maintaining the performance of the heart.Objectives: In the present study we want to investigate the adaptive response of heart tissue to chronic systemic hypoxia and the correlation with apelin expression and oxidative stress in rat. Methods: An experimental study was performed using 28 Sprague-Dawley male rats, 8 weeks of age. Rats were divided into 7 groups 4 each, namely control group; normoxia (O2 atmosphere) and the treatment group of hypoxia (8% O2) for 6 hours; 1;3;5;7 and 14 days respectively. Body weight and heart weight were measured at each treatment. Ventricular thickness was measured by caliper, Apelin mRNA was measured using real-time qRT-PCR with Livak formula and malondialdehyde (MDA) level was used to assess oxidative stress due to cardiac tissue hypoxia.Results: Macroscopic exams showed hypertrophy at day 7th. The relative expression of Apelin mRNA in hypoxic heart is decreased at the beginning and then increased, starting from day-7 to day-14. The MDA levels were significantly increased from day-7 and were strongly correlated with relative expression Apelin.Conclusion:  It is concluded that the increase of Apelin expression is related to oxidative stress in heart tissue of rats during chronic systemic hypoxia.


2009 ◽  
Vol 61 (4) ◽  
pp. 693-701 ◽  
Author(s):  
S.Z. Pavlovic ◽  
Slavica Borkovic-Mitic ◽  
Tijana Radovanovic ◽  
Branka Perendija ◽  
Svetlana Despotovic ◽  
...  

The aim of this study was to investigate the activity of oxidative stress biomarkers (total superoxide dismutase - Tot SOD; and copper and zinc-containing superoxide dismutase - CuZn SOD; manganese-containing superoxide dismutase - Mn SOD; catalase - CAT; glutathione peroxidase - GSH-Px; and glutathione reductase - GR), as well as the biotransformation phase II enzyme glutathione-S-transferase (GST), in the white muscle of red mullet (Mullus barbatus L.) at Platamuni (PL) and Valdanos (VAL) in the Adriatic Sea during the winter and spring seasons. The obtained results show both site and seasonal influences on the investigated parameters, with lower enzyme activities at VAL than at PL and in spring than in winter.


Sign in / Sign up

Export Citation Format

Share Document