Antibiotic resistance pattern of Acinetobacter baumannii from burns patients: increase in prevalence of blaOXA-24-like and blaOXA-58-like genes

Author(s):  
Niloofar Tafreshi ◽  
Laleh Babaeekhou ◽  
Maryam Ghane

Background and Objectives: Notwithstanding the increased prevalence of Acinetobacter baumannii drug-resistant isolates, treatment options are progressively limiting. This study aims to provide a recent report on antibiotic susceptibility in burn wound isolates of A. baumannii, and the importance of OXA beta-lactamases in carbapenem resistance. Materials and Methods: The susceptibility levels to different antimicrobial categories were determined among 84 A. baumannii isolates from burn wound infection between 2016 and 2018. Multiplex PCR was used to detect OXA beta-lactamases genes, including blaOXA-51, blaOXA-23, blaOXA-24 and blaOXA-58. ISAba-1 association with blaOXA-51, blaOXA-23 and blaOXA-58 was detected by PCR mapping. Results: All the isolates were determined as multidrug-resistant (MDR) and 69% as extensively drug-resistant (XDR). Different carbapenems MIC ranges (MIC50 and MIC90) were observed among the isolates harboring blaOXA-like genes and isolates with the OXA-24-like enzyme showed higher carbapenems MIC ranges. The prevalence of blaOXA-51-like, blaOXA-23-like, blaOXA-24-like and blaOXA-58-like were 100%, 53.57%, 41.66% and 30.95%, respectively. ISAba-1 insertion sequence was found to be upstream to blaOXA-23-like and blaOXA-58-like genes in 23 out of 45 (71.1%) blaOXA-23-like-positive and 4 out of 23 (15.3) blaOXA-58-like-positive isolates, respectively. Conclusion: Resistance to carbapenems as the last resort for treatment of A. baumannii infections is growing. This study, for the first time in Iran, has observed the increased frequency of blaOXA-24-like and blaOXA-58-like genes and found an association between ISAba-1 and blaOXA-58-like gene, which signifies the possible risk of increased diversity in OXA beta-lactamases and growth in carbapenem resistance

2008 ◽  
Vol 52 (11) ◽  
pp. 4115-4120 ◽  
Author(s):  
Raffaele Zarrilli ◽  
Domenico Vitale ◽  
Anna Di Popolo ◽  
Maria Bagattini ◽  
Ziad Daoud ◽  
...  

ABSTRACT We investigated the basis of the carbapenem resistance of 17 multidrug-resistant Acinetobacter baumannii clinical isolates collected from 2004 to 2005 at the Saint George University Hospital in Beirut, Lebanon. A. baumannii isolates were clonally related and were susceptible to colistin and trimethoprim-sulfamethoxazole, susceptible or intermediate to ampicillin-sulbactam and meropenem, and resistant to all other antimicrobials. Conjugation experiments demonstrated that resistance to imipenem could be transferred along with a plasmid containing the carbapenem-hydrolyzing oxacillinase bla OXA-58 gene. The plasmid that we called pABIR was 29,823 bp in size and showed a novel mosaic structure composed of two origins of replication, four insertion sequence (IS) elements, and 28 open reading frames. The bla OXA-58 gene was flanked by IS18 and ISAba3 elements at the 5′ and 3′ ends, respectively. The production of the carbapenem-hydrolyzing oxacillinase OXA-58 was apparently the only mechanism for carbapenem resistance in A. baumannii isolates causing the outbreak at the Lebanese Hospital.


2021 ◽  
Author(s):  
Alka Hasani ◽  
Abolfazl vahhabi ◽  
Mohammad Ahangarzadeh Rezaee ◽  
Behzad Baradaran ◽  
Akbar Hasani ◽  
...  

Abstract Background. The emergence of multidrug and extensive drug resistant strains of Acinetobacter baumannii‎ is a multifactorial consequence. Carbapenems, once considered the traditional standard of care for Acinetobacter infections however, are gradually being curtailed from the therapeutic regime due to the emergence of Carbapenem resistant Acinetobacter baumannii‎ (CRAB). Several carbapenem resistant mechanisms have been postulated for the rise of CRAB. This study investigated clinical A.baumannii isolates for the presence and level of expression of enzymatic and non-enzymatic genes, putatively associated with carbapenem resistance and their association with sequence typing. Methods. Uniplex, and Multiplex PCR were performed to identify the presence of oxacillinase (OXA) and metallo β-lactamase (MBLs) genes respectively. The level of expression of efflux pumps (adeB and adeJ) and porins (carO, omp33-36 and oprD) was investigated by Real-time PCR. Results. Of the 112 isolates obtained during this study, 100% were multidrug-resistant and 48.2% were extensive drug-resistant A.baumannii. All CRAB isolates harbored blaOXA−51−like, while, 82.1% and 63.4% of these isolates carried blaOXA−23−like and blaOXA−24/40−like genes, respectively. In contrast, the frequency of metallo β-lactamase genes was comparatively less than the oxacillinase genes. Over-expression of adeB and adeJ was observed in 66% and 42.8% A.baumannii strains respectively, while, decreased expression of carO, omp33-36 and oprD was observed in 75%, 66% and 72.3% strains respectively. Conclusion. Consistent with that reported by others, our study highlights the significant dissemination of the oxacillinase, blaOXA−23−like in CRAB isolates, particularly the simultaneous occurrence of blaOXA−23−like with blaOXA−40. Interestingly, while changes in the expression of efflux pumps and porins were observed nevertheless, more in depth investigation is required to decipher their contribution to carbapenem resistance in these strains.


Author(s):  
Müberra Çimen ◽  
Azer Özad Düzgün

AbstractThe aim of this study was to identify antimicrobial resistance and virulence factor genes exhibited by multidrug resistant (MDR) Acinetobacter baumannii, to analyze biofilm formation and to investigate clonal subtypes of isolate. Whole genome sequencing was done by Illumina NovaSeq 6,000 platform and multilocus sequence typing (MLST) was performed by Oxford and Pasteur typing schemes. Influence of imipenem and levofloxacin on biofilm formation was investigated in 96-well plates at 3 replicates. The strain was found to carry OXA-23, OXA-51-like, AmpC and TEM-1 beta-lactamases. The sequence of the blaOXA-51-like gene has been identified as a blaOXA-66. According to Pasteur MLST scheme the strain displayed ST2 allelic profile. However, based on Oxford MLST scheme this strain represents the new ST2121, as the gdhB gene has a single allelic mutation namely, the gdhB-227. It was determined that MDR isolate carried bap, basABCDFGHIJ, csuA/BABCDE, bauABCDEF, plcD, pgaABCD, entE, barAB, ompA, abaIR, piT2EAFTE/AUBl, fimADT, cvaC, bfmR, bfmS virulence genes. In our study imipenem induced the highest biofilm formation at a concentration of 32 µg/ml and levofloxacin at a concentration of 16 µg/ml. In conclusion, we detected a new MDR A. baumannii ST2121 clone harboring blaOXA-66 gene that has been reported for the first time in Turkey.


Author(s):  
Xiufeng Zhang ◽  
Fangping Li ◽  
Furqan Awan ◽  
Hongye Jiang ◽  
Zhenling Zeng ◽  
...  

Carbapenem-resistant Acinetobacter baumannii (CRAB) is a major cause of nosocomial infections and hospital outbreaks worldwide, remaining a critical clinical concern. Here we characterized and investigated the phylogenetic relationships of 105 CRAB isolates from an intensive care unit from one hospital in China collected over six years. All strains carried blaOXA-23, blaOXA-66 genes for carbapenem resistance, also had high resistance gene, virulence factor, and insertion sequence burdens. Whole-genome sequencing revealed all strains belonged to ST2, the global clone CC2. The phylogenetic analysis based on the core genome showed all isolates were dominated by a single lineage of three clusters and eight different clones. Two clones were popular during the collection time. Using chi-square test to identify the epidemiologically meaningful groupings, we found the significant difference in community structure only existed in strains from separation time. The haplotype and median-joining network analysis revealed genetic differences appeared among clusters and changes occurred overtime in the dominating cluster. Our results highlighted substantial multidrug-resistant CRAB burden in the hospital ICU environment demonstrating potential clone outbreak in the hospital.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 96
Author(s):  
Stephen J. Dollery ◽  
Daniel V. Zurawski ◽  
Elena K. Gaidamakova ◽  
Vera Y. Matrosova ◽  
John K. Tobin ◽  
...  

Acinetobacter baumannii is a bacterial pathogen that is often multidrug-resistant (MDR) and causes a range of life-threatening illnesses, including pneumonia, septicemia, and wound infections. Some antibiotic treatments can reduce mortality if dosed early enough before an infection progresses, but there are few other treatment options when it comes to MDR-infection. Although several prophylactic strategies have been assessed, no vaccine candidates have advanced to clinical trials or have been approved. Herein, we rapidly produced protective whole-cell immunogens from planktonic and biofilm-like cultures of A. baumannii, strain AB5075 grown using a variety of methods. After selecting a panel of five cultures based on distinct protein profiles, replicative activity was extinguished by exposure to 10 kGy gamma radiation in the presence of a Deinococcus antioxidant complex composed of manganous (Mn2+) ions, a decapeptide, and orthophosphate. Mn2+ antioxidants prevent hydroxylation and carbonylation of irradiated proteins, but do not protect nucleic acids, yielding replication-deficient immunogenic A. baumannii vaccine candidates. Mice were immunized and boosted twice with 1.0 × 107 irradiated bacterial cells and then challenged intranasally with AB5075 using two mouse models. Planktonic cultures grown for 16 h in rich media and biofilm cultures grown in static cultures underneath minimal (M9) media stimulated immunity that led to 80–100% protection.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Balaram Khamari ◽  
Prakash Kumar ◽  
Bulagonda Eswarappa Pradeep

Introduction. Nitrofurantoin is one of the preferred antibiotics in the treatment of uropathogenic multidrug-resistant (MDR) infections. However, resistance to nitrofurantoin in extensively drug-resistant (XDR) bacteria has severely limited the treatment options. Gap statement. Information related to co-resistance or collateral sensitivity (CS) with reference to nitrofurantoin resistant bacteria is limited. Aim. To study the potential of nitrofurantoin resistance as an indicator of the XDR phenotype in Enterobacteriaceae . Methods. One hundred (45 nitrofurantoin-resistant, 21 intermediately resistant and 34 nitrofurantoin-susceptible) Enterobacteriaceae were analysed in this study. Antibiotic susceptibility testing (AST) against nitrofurantoin and 17 other antimicrobial agents across eight different classes was performed by using the Vitek 2.0 system. The isolates were screened for the prevalence of acquired antimicrobial resistance (AMR) and efflux pump genes by PCR. Results. In total, 51 % of nitrofurantoin-resistant and 28 % of intermediately nitrofurantoin resistant isolates exhibited XDR characteristics, while only 3 % of nitrofurantoin-sensitive isolates were XDR (P=0.0001). Significant co-resistance was observed between nitrofurantoin and other tested antibiotics (β-lactam, cephalosporin, carbapenem, aminoglycoside and tetracycline). Further, the prevalence of AMR and efflux pump genes was higher in the nitrofurantoin-resistant strains compared to the susceptible isolates. A strong association was observed between nitrofurantoin resistance and the presence of bla PER-1, bla NDM-1, bla OXA-48, ant(2) and oqxA-oqxB genes. Tigecycline (84 %) and colistin (95 %) were the only antibiotics to which the majority of the isolates were susceptible. Conclusion. Nitrofurantoin resistance could be an indicator of the XDR phenotype among Enterobacteriaceae , harbouring multiple AMR and efflux pump genes. Tigecycline and colistin are the only antibiotics that could be used in the treatment of such XDR infections. A deeper understanding of the co-resistance mechanisms in XDR pathogens and prescription of AST-based appropriate combination therapy may help mitigate this problem.


2017 ◽  
Vol 30 (3) ◽  
pp. 175 ◽  
Author(s):  
Fernando Maltez ◽  
Teresa Martins ◽  
Diana Póvoas ◽  
João Cabo ◽  
Helena Peres ◽  
...  

Introduction: Beijing family strains of Mycobacterium tuberculosis are associated with multidrug-resistance. Although strains of the Lisboa family are the most common among multidrug-resistant and extensively drug-resistant patients in the region, several studies have reported the presence of the Beijing family. However, the features of patients from whom they were isolated, are not yet known.Material and Methods: Retrospective study involving 104 multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis, from the same number of patients, isolated and genotyped between 1993 and 2015 in Lisbon. We assessed the prevalence of strains of both families and the epidemiologic and clinical features of those infected with Beijing family strains.Results: Seventy-four strains (71.2%) belonged to the Lisboa family, 25 (24.0%) showed a unique genotypic pattern and five (4.8%) belonged to the Beijing family, the latter identified after 2009. Those infected with Beijing family strains were angolan (n = 1), ukrainian (n = 2) and portuguese (n = 2), mainly young-aged and, four of five immunocompetent and with no past history of tuberculosis. All had multidrug-resistant tuberculosis. We did not find any distinctive clinical or radiological features, neither a predominant resistance pattern. Cure rate was high (four patients).Discussion: Although the number of infected patients with Beijing strains was small, it suggests an important proportion of primary tuberculosis, a potential for transmission in the community but also a better clinical outcome when compared to other reported strains, such as W-Beijing and Lisboa.Conclusion: Although Lisboa family strains account for most of the multidrug and extensively drug-resistant tuberculosis cases in Lisbon area, Beijing strains are transmitted in the city and might change the local characteristics of the epidemics.


2020 ◽  
Author(s):  
Reem M Hassan ◽  
Sherifa T Salem ◽  
Saly Ismail Mostafa Hassan ◽  
Asmaa Sayed Hegab ◽  
Yasmine S Elkholy

AbstractAcinetobacter baumannii (A. baumannii) represents a global threat owing to its ability to resist most of the currently available antimicrobial agents. Moreover, emergence of carbapenem resistant A. baumannii (CR-AB) isolates limits the available treatment options. Enzymatic degradation by variety of ß-lactamases, have been identified as the most common mechanism of carbapenem resistance in A. baumannii. The alarming increase in the prevalence of CR-AB necessitates continuous screening and molecular characterization to appreciate the problem. The present study was performed to assess the prevalence and characterize carbapenemases among 206 CR-AB isolated from various clinical specimens collected from different intensive care units at Kasr Al-Aini Hospital.All isolates were confirmed to be A. baumannii by detection of the blaOXA-51-like gene. Molecular screening of 13 common Ambler class bla carbapenemases genes in addition to insertion sequence (IS-1) upstream OXA-23 was performed by using four sets of multiplex PCR, followed by identification using gene sequencing technology. Among the investigated genes, the prevalence of blaOXA-23, and blaOXA-58 were 77.7%, and 1.9%, respectively. The ISAba1 was detected in 10% of the blaOXA-23 positive isolates. The prevalence of metallo-β-lactamases (MBLs) studied; blaNDM-1, blaSPM, blaVIM, blaSIM-1 were 11.7%, 6.3%, 0.5%, and 0.5% respectively. One of class A; bla KPC was detected in 10.7% of the investigated isolates. blaOXA-24/40, blaIMP, blaGES, blaVEB and blaGIM were not detected in any of the studied isolates. Moreover, 18.4% of the isolates have shown to harbor two or more of the screened bla genes. We concluded that the most prevalent type of ß-lactamases genes among CR-AB isolates collected from Egyptian patients were blaOXA-23 followed by blaNDM-1 and blaKPC.Author summaryCarbapenem-resistant A. baumannii has become a real global health threat. The aim of the present study was to characterize and to assess the prevalence of carbapenemases among 206 CR-AB clinical isolates from Egyptian patients. We concluded that the most prevalent type of ß-lactamases genes among CR-AB isolates collected from Egyptian patients were blaOXA-23 followed by blaNDM-1 and blaKPC. In this study, ISAba1 was detected upstream 10% of blaOXA-23 positive isolates only which indicates that the spread of resistance among Acinetobacter isolates could be either chromosomal or plamid-mediated.


2006 ◽  
Vol 50 (9) ◽  
pp. 2941-2945 ◽  
Author(s):  
Karen Lolans ◽  
Thomas W. Rice ◽  
L. Silvia Munoz-Price ◽  
John P. Quinn

ABSTRACT During 2005 we detected a multicity outbreak of infections or colonization due to high-level imipenem-resistant Acinetobacter baumannii (MIC, 64 μg/ml). One hundred isolates from diverse sources were obtained from seven acute-care hospitals and two extended-care facilities; 97% of the isolates belonged to one clone. Susceptibility testing of the first 42 isolates (January to April 2005) revealed broad resistance profiles. Half of the isolates were susceptible to ceftazidime, with many isolates susceptible only to colistin. The level of AmpC β-lactamase expression was stronger in isolates resistant to ceftazidime. PCR and subsequent nucleotide sequencing analysis identified bla OXA-40. The presence of an OXA-40 β-lactamase in these isolates correlated with the carbapenem resistance. By Southern blot analysis, a bla OXA-40-specific probe revealed that the gene was both plasmid and chromosomally located. This is the first time in the United States that such carbapenem resistance in A. baumannii has been attributable to a carbapenemase.


Antibiotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 42 ◽  
Author(s):  
Lenhard ◽  
Bulman ◽  
Tsuji ◽  
Kaye

The manuscripts contained in this special edition of Antibiotics represent a current review of the polymyxins as well as highlights from the 3rd International Polymyxin Conference, which was held in Madrid, Spain, April 25 to 26, 2018. The role of the polymyxin antibiotics has evolved over time based on the availability of alternative agents. After high rates of nephrotoxicity caused the drug class to fall out of favor, polymyxins were once against utilized in the 21st century to combat drug-resistant pathogens. However, the introduction of safer agents with activity against drug-resistant organisms has brought the future utility of polymyxins into question. The present review investigates the future niche of polymyxins by evaluating currently available and future treatment options for difficult-to-treat pathogens. The introduction of ceftazidime-avibactam, meropenem-vaborbactam and plazomicin are likely to decrease polymyxin utilization for infections caused by Enterobacteriaceae. Similarly, the availability of ceftolozane-tazobactam will reduce the use of polymyxins to counter multidrug-resistant Pseudomonas aeruginosa. In contrast, polymyxins will likely continue be an important option for combatting carbapenem-resistant Acinetobacter baumannii until better options become commercially available. Measuring polymyxin concentrations in patients and individualizing therapy may be a future strategy to optimize clinical outcomes while minimizing nephrotoxicity. Inhaled polymyxins will continue to be an adjunctive option for pulmonary infections but further clinical trials are needed to clarify the efficacy of inhaled polymyxins. Lastly, safer polymyxin analogs will potentially be an important addition to the antimicrobial armamentarium.


Sign in / Sign up

Export Citation Format

Share Document