scholarly journals Prediction of Greenhouse Gas Emissions in Municipal Solid Waste Landfills Using LandGEM and IPCC Methods in Yazd, Iran

Author(s):  
Mehdi Mokhtari ◽  
Aliasghar Ebrahimi ◽  
Salimeh Rezaeinia

Introduction: The increase in greenhouse gas (GHG) emissions has changed the global temperature and had a negative impact on global climate conditions. Landfill gas is one of the major GHG contributors. With the knowledge of GHG inventory, it is possible to carry out disaster prevention measures. Materials and Methods: In this study, tow Landfill Gas Emissions Modeling (LandGEM) and Intergovernmental Panel on Climate Change (IPCC), were used to determine the GHG quantity of the Yazd county landfill sector using from 2000 to 2020. Results: During this period, by the IPCC model, the total level of methane emissions from the Yazd county landfill was 23.17 Giga gram/y (Gg/y), while based on the LandGEM model, the total value of methane emissions from the Yazd county landfill was 5.74 Gg/y. The total amount of CO2 in the Yazd county landfill of the years 2000–2020 is estimated to be 15.75 Gg/y in the LandGEM model. There is the potential to generate 11.88 MWh/year electricity for the Yazd county landfill in 2020. Conclusion: The results of the present study can be employed to plan and implement a system for collecting methane gas and control the emission of GHG to landfills.

Author(s):  
Hanna Pondel

Changes in seasonal weather cycles, a growing number of extreme phenomena, an upward trend in temperature and changes in the distribution of rainfall, significantly affect the functioning and effectiveness of agriculture. However, agriculture plays a major role in the emergence and intensification of these phenomena. The aim of the article is to present, analyse and evaluate the relations between agriculture and climate, with particular emphasis on greenhouse gas (GHG) emissions from agriculture in these relations. A cause-and-effect analysis was conducted based on literature studies, using the descriptive statistics method and analysis of the development trend. The basis for analysis were data on GHG emissions in the European Union (EU-28). The contribution of agriculture to the EU’s greenhouse gas emissions, albeit slightly but still increasing in recent years. The level of this emission is determined primarily by the type of agricultural activity conducted – animal production is definitely responsible for higher emissions than plant production. It is difficult to present a universal model of agricultural adaptation to climate change and a set of actions limiting the negative impact of agricultural production on climate. This is hindered by both the specificity of the agricultural sector and the large diversity of local conditions and applied farming practices. The opportunity to increase the effectiveness of actions taken may be a better connection between the implementation of objectives including the reduction of the causes and negative consequences of climate change and the objectives of sustainable agricultural development.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3784
Author(s):  
Piotr Gołasa ◽  
Marcin Wysokiński ◽  
Wioletta Bieńkowska-Gołasa ◽  
Piotr Gradziuk ◽  
Magdalena Golonko ◽  
...  

The relationship between agriculture and climate change is two-sided. Agriculture is the branch of the economy most affected by the ongoing processes. It is also a large emitter of greenhouse gases and there are more and more voices about the need to reduce emissions. The purpose of the study was, based on FADN (Farm Accountancy Data Network) data, to determine the structure of greenhouse gas emissions in farms and to identify types of farms where it is possible to reduce GHG (greenhouse gas) emissions through better energy use. The emission volume was determined on the basis of the IPCC (Intergovernmental Panel on Climate Change) methodology modified for the FADN data. The emissions related to the production of energy were found to be of minor importance compared to other emission sources. Only in the horticultural crop type is the emission from the Energy section the dominant stream of GHG emission. The greatest emissions come from livestock production. Therefore, the emphasis on reducing emissions should not be placed on the Energy sector because, except for the type of horticultural farm, there is not much potential for reduction. The introduction of taxes for GHG emissions at the level of 27.31 EUR/t would reduce farm income from 21% for the type of field crops to 40% for the type of herbivorous animals. The exception is low-emission permanent crops, where the decrease in income would be only 3.85%.


2021 ◽  
Vol 896 (1) ◽  
pp. 012054
Author(s):  
I Suryati ◽  
A Hijriani ◽  
I Indrawan

Abstract Household activities have the potential to produce greenhouse gas emissions. The government’s policy to work and study from home during the COVID-19 pandemic affects greenhouse gas emissions produced by household activities, starting from energy and waste and liquid waste produced, so it is necessary to carry out an emission inventory. The purpose of this study is to calculate greenhouse gas emissions (CO2 and CH4) from household activities in Binjai City during the COVID-19 pandemic and determine emission reduction scenarios that can be carried out in Binjai City. The calculation method used is based on the 2006 IPCC (Intergovernmental Panel in Climate Change) guidelines. CO2 emissions resulting from the use of LPG are 2025.80 tons CO2e/month, the use of fuel for daily transportation activities is 3484.84 tons CO2e/month, and electricity usage is 14956.66 Ton CO2e/month. CH4 emissions produced from domestic liquid waste are 417.14 tons CO2e/month, and household waste is 27.54 tons CO2e/month. The COVID-19 pandemic increases GHG emissions from household electricity consumption in Binjai City by ± 7% and reduces GHG emissions from fuel consumption by 3.5%.


2021 ◽  
Vol 13 (21) ◽  
pp. 12186
Author(s):  
Georgiana Moiceanu ◽  
Mirela Nicoleta Dinca

Greenhouse gases (GHG), such as carbon dioxide, methane, nitrous oxide, and other gases, are considered to be the main cause of global climate change, and this problem has received significant global attention. Carbon dioxide has been considered the most significant gas contributing to global climate change. Our paper presents an analysis of the greenhouse gas emissions in Romania along with a forecast for the years to come. For the study, data from the National Institute of Statistics and Eurostat were gathered and used for the analysis in order to present the results. To obtain the results, the data gathered were analyzed using forecasting methods that can be of help in solving some uncertainties that surround the future. The greenhouse gas (GHG) emissions trends in Romania were analyzed both for linear and exponential function methods. The obtained results showed that the linear function analysis of total GHG emissions in Romania had a forecast accuracy higher than the exponential function method. From the analytical methods used we can draw the conclusion that the emissions are on a descending scale and choosing a proper method is important in analyzing data.


2019 ◽  
Author(s):  
Julianne M. Fernandez ◽  
Amy Townsend-Small ◽  
Arthur Zastepa ◽  
Susan B. Watson ◽  
Jay A. Brandes

AbstractEutrophication is linked to greenhouse gas emissions from inland waters. Phytoplankton blooms in Lake Erie, one of Earth’s largest lakes, have increased with nutrient runoff linked to climate warming, although greenhouse gas emissions from this or other large eutrophic lakes are not well characterized. We measured greenhouse gases around Lake Erie in all four seasons and found that CH4 and N2O emissions have increased 10 times or more with re-eutrophication, especially during and after phytoplankton blooms. Lake Erie is a positive source of CH4 throughout the entire year and around the entire lake, with the highest emissions in spring and summer near the mouth of the Maumee River. While Lake Erie is an overall N2O source, it is an N2O sink in winter throughout the lake and in some locations during large phytoplankton blooms. We estimate that Lake Erie emits ~6300 metric tons of CH4-C yr−1 (± 19%) and ~600 metric tons N2O-N yr−1 (± 37%): almost 500,000 metric tons CO2-eq yr−1 total. These results highlight the gravity of eutrophication-related increases in large lake GHG emissions: an overlooked, but potentially major feedback to global climate change.


2017 ◽  
Vol 4 (3) ◽  
pp. 62-72
Author(s):  
O. Zhukorsky ◽  
O. Nykyforuk ◽  
N. Boltyk

Aim. Proper development of animal breeding in the conditions of current global problems and the decrease of anthropogenic burden on environment due to greenhouse gas emissions, caused by animal breeding activity, require the study of interaction processes between animal breeding and external climatic conditions. Methods. The theoretical substantiation of the problem was performed based on scientifi c literature, statistical informa- tion of the UN Food and Agriculture Organization and the data of the National greenhouse gas emissions inventory in Ukraine. Theoretically possible emissions of greenhouse gases into atmosphere due to animal breeding in Ukraine and specifi c farms are calculated by the international methods using the statistical infor- mation about animal breeding in Ukraine and the economic-technological information of the activity of the investigated farms. Results. The interaction between the animal breeding production and weather-and-climate conditions of environment was analyzed. Possible vectors of activity for the industry, which promote global warming and negative processes, related to it, were determined. The main factors, affecting the formation of greenhouse gases from the activity of enterprises, aimed at animal breeding production, were characterized. Literature data, statistical data and calculations were used to analyze the role of animal breeding in the green- house gas emissions in global and national framework as well as at the level of specifi c farms with the consid- eration of individual specifi cities of these farms. Conclusions. Current global problems require clear balance between constant development of sustainable animal breeding and the decrease of the carbon footprint due to the activity of animal breeding.


Author(s):  
Dandan Liu ◽  
Dewei Yang ◽  
Anmin Huang

China has grown into the world’s largest tourist source market and its huge tourism activities and resulting greenhouse gas (GHG) emissions are particularly becoming a concern in the context of global climate warming. To depict the trajectory of carbon emissions, a long-range energy alternatives planning system (LEAP)-Tourist model, consisting of two scenarios and four sub-scenarios, was established for observing and predicting tourism greenhouse gas peaks in China from 2017 to 2040. The results indicate that GHG emissions will peak at 1048.01 million-ton CO2 equivalent (Mt CO2e) in 2033 under the integrated (INT) scenario. Compared with the business as usual (BAU) scenario, INT will save energy by 24.21% in 2040 and reduce energy intensity from 0.4979 tons of CO2 equivalent/104 yuan (TCO2e/104 yuan) to 0.3761 Tce/104 yuan. Although the INT scenario has achieved promising effects of energy saving and carbon reduction, the peak year 2033 in the tourist industry is still later than China’s expected peak year of 2030. This is due to the growth potential and moderate carbon control measures in the tourist industry. Thus, in order to keep the tourist industry in synchronization with China’s peak goals, more stringent measures are needed, e.g., the promotion of clean fuel shuttle buses, the encouragement of low carbon tours, the cancelation of disposable toiletries and the recycling of garbage resources. The results of this simulation study will help set GHG emission peak targets in the tourist industry and formulate a low carbon roadmap to guide carbon reduction actions in the field of GHG emissions with greater certainty.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2021 ◽  
Author(s):  
Ain Kull ◽  
Iuliia Burdun ◽  
Gert Veber ◽  
Oleksandr Karasov ◽  
Martin Maddison ◽  
...  

<p>Besides water table depth, soil temperature is one of the main drivers of greenhouse gas (GHG) emissions in intact and managed peatlands. In this work, we evaluate the performance of remotely sensed land surface temperature (LST) as a proxy of greenhouse gas emissions in intact, drained and extracted peatlands. For this, we used chamber-measured carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) data from seven peatlands in Estonia collected during vegetation season in 2017–2020. Additionally, we used temperature and water table depth data measured in situ. We studied relationships between CO<sub>2</sub>, CH<sub>4</sub>, in-situ parameters and remotely sensed LST from Landsat 7 and 8, and MODIS Terra. Results of our study suggest that LST has stronger relationships with surface and soil temperature as well as with ecosystem respiration (R<sub>eco</sub>) over drained and extracted sites than over intact ones. Over the extracted cites the correlation between R<sub>eco</sub> CO<sub>2</sub> and LST is 0.7, and over the drained sites correlation is 0.5. In natural sites, we revealed a moderate positive relationship between LST and CO<sub>2</sub> emitted in hollows (correlation is 0.6) while it is weak in hummocks (correlation is 0.3). Our study contributes to the better understanding of relationships between greenhouse gas emissions and their remotely sensed proxies over peatlands with different management status and enables better spatial assessment of GHG emissions in drainage affected northern temperate peatlands.</p>


2021 ◽  
Vol 16 (3) ◽  
pp. 7-13
Author(s):  
Radik Safin ◽  
Ayrat Valiev ◽  
Valeriya Kolesar

Global climatic changes have a negative impact on the development of all sectors of the economy, including agriculture. However, the very production of agricultural products is one of the most important sources of greenhouse gases entering the atmosphere. Taking into account the need to reduce the “carbon footprint” in food production, a special place is occupied by the analysis of the volume of greenhouse gas emissions and the development of measures for their sequestration in agriculture. One of the main directions for reducing emissions and immobilizing greenhouse gases is the development of special techniques for their sequestration in the soil, including those used in agriculture. Adaptation of existing farming systems for this task will significantly reduce the “carbon footprint” from agricultural production, including animal husbandry. The development of carbon farming allows not only to reduce greenhouse gas emissions, but also to significantly increase the level of soil fertility, primarily by increasing the content of organic matter in them. As a result, it becomes possible, along with the production of crop production, to produce “carbon units” that are sold on local and international markets. The paper analyzes possible greenhouse gas emissions from agriculture and the potential for their sequestration in agricultural soils. The role of various elements of the farming system in solving the problem of reducing the “carbon footprint” is considered and ways of developing carbon farming in the Republic of Tatarstan are proposed


Sign in / Sign up

Export Citation Format

Share Document