scholarly journals Evaluation of Class 1 and 2 Integrons and Antibiotic Resistance Pattern in Salmonella enterica Isolated from Diarrheal Food-Borne Outbreaks in Iran

Author(s):  
S.F. Sayadnouri ◽  
M.M. Soltan Dallal ◽  
S. Akbarzadeh ◽  
R. Mazaheri Nezhad Fard

Background: Salmonella spp. are major causes of food-borne disease and have been identified among many diarrheal outbreaks. The major aim of the current investigation was to evaluate the class 1 and 2 integrons and antibiotic resistance pattern in Salmonella enterica isolated from diarrheal food-borne outbreaks in Iran.  Methods: This study was carried out on 115 diarrheal feces samples obtained from food-borne outbreak in 2016 in Iran. Antimicrobial resistance patterns of 27 isolated S. enterica seovars and presence of class 1 and class 2 integrons in the serovars were investigated using conventional and molecular methods. Results were statistically analyzed using SPSS software v. 21 and Chi-Square test. Results: Overall, 27 S. enterica were characterized as 14 S. Paratyphi C, 7 S. Enteritidis, 5 S. Paratyphi D, and 1 S. Paratyphi A serovars. Results of molecular assay showed that class 1 integron presented in all and class 2 integron in three strains. All isolates with class 2 integron genes were resistant to almost all the antimicrobials. Conclusion: Most studied Salmonella strains from diarrheal food-borne outbreak of Iran in 2016 were multiple resistant to the highlighted antimicrobials. Knowledge about risk factor involving the salmonellosis and their control measures could help the national authorities to prevent the outbreaks. Further comprehensive studies with larger sample sizes are necessary to acquire more data about risk factors of multiple resistant Salmonella outbreaks in the country.

2020 ◽  
Vol 20 (2) ◽  
pp. 160-166
Author(s):  
Seyedeh Hanieh Eshaghi Zadeh ◽  
Hossein Fahimi ◽  
Fatemeh Fardsanei ◽  
Mohammad Mehdi Soltan Dallal

Background: Salmonellosis is a major food-borne disease worldwide. The increasing prevalence of antimicrobial resistance among food-borne pathogens such as Salmonella spp. is concerning. Objective: The main objective of this study is to identify class 1 integron genes and to determine antibiotic resistance patterns among Salmonella isolates from children with diarrhea. Methods: A total of 30 Salmonella isolates were recovered from children with diarrhea. The isolates were characterized for antimicrobial susceptibility and screened for the presence of class 1 integron genes (i.e. intI1, sulI1, and qacEΔ1). Results: The most prevalent serotype was Enteritidis 36.7%, followed by Paratyphi C (30%), and Typhimurium (16.7%). The highest rates of antibiotic resistance were obtained for nalidixic acid (53.3%), followed by streptomycin (40%), and tetracycline (36.7%). Regarding class 1 integrons, 36.7%, 26.7%, and 33.3% of the isolates carried intI1, SulI, and qacEΔ1, respectively, most of which (81.8%) were multidrug-resistant (MDR). Statistical analysis revealed that the presence of class 1 integron was significantly associated with resistance to streptomycin and tetracycline (p = 0.042). However, there was no association between class 1 integron and other antibiotics used in this study (p > 0.05). Conclusion: The high frequency of integron class 1 gene in MDR Salmonella strains indicates that these mobile genetic elements are versatile among different Salmonella serotypes, and associated with reduced susceptibility to many antimicrobials.


2015 ◽  
Vol 18 (4) ◽  
pp. 85-94
Author(s):  
Hoang Van Minh Nguyen ◽  
Vinh Thanh Nguyen ◽  
James Ian Campbell ◽  
Stephen Baker ◽  
Tu Canh Nguyen ◽  
...  

This study is to survey the prevalence and antibiotic resistance pattern of Salmonella spp. isolated from the farms at Dak Lak province, Viet Nam. 139 farms including 5 civet farms, 14 pig farms and 120 duck farms were sampled and analyzed. The results showed that many samples collected from 120 duck farms,14 pig farms and 5 civet farms were positive positive for Salmonella spp. Four serogroups of Salmonella species were demonstrated, Salmonella group B (25 strains), Salmonella group non-typable (13 strains), Salmonella group D (8 strains) and Salmonella group C (2 strains). There were 50 % of Salmonella strains resisting to at least one antibiotic, 75 % of the strains expressing multiple antibiotic resistance. In particular, 3 strains Salmonella secreted to ESBL (Extented-spectrum- beta lactamse).


Author(s):  
Jinru Chen ◽  
Joycelyn Quansah

Fresh produce-borne enteric bacterial pathogens with resistance to antibiotics have posed serious challenges to food safety and public health worldwide.  This study examined the antibiotic resistance profile of Salmonella enterica (n=33), previously isolated from exotic and indigenous leafy green vegetable samples (n=328) collected from 50 vegetable farms in 12 farming areas and 37 vegetable sellers in 4 market centers in Accra, Ghana during the period of March 2016 to March 2017, and determined the distribution of integrons among antibiotic-resistant isolates.  The susceptibility of the Salmonella isolates to 12 antibiotics was assayed using the standard disc diffusion assay.  The minimum inhibitory concentrations (MICs) of the five most resisted antibiotics were determined using the twofold macro dilution method.  PCR assay was used to detect the presence of integrons in Salmonella cells, and PCR product with amplified integron gene cassette was purified and sequenced using the Sanger sequencing technology.  The Salmonella isolates used in the study resisted at least one tested antibiotic, and multi-drug resistant (MDR) isolates were 30.3% (10/33).  Most isolates (81.8%) were resistant to sulfisoxazole.  The MICs of tetracycline, cefoxitin, streptomycin, ampicillin, and sulfisoxazole were 16, 32, 64, 64, and > 1,024 µg/ml, respectively.  A total of five different patterns of MDR were observed among the Salmonella isolates, and the common MDR patterns were AAuFox (30.3%) and AAuFoxSSu (18.1%).  One out of the 33 (3.0%) Salmonella isolates tested positive for class 1 integron with a gene cassette of about 800 bp.  Nucleotide sequencing revealed the class 1 integron carried a single gene dfrA7 .  Future studies are needed to confirm whether the consumption of contaminated leafy green vegetables is a route of acquiring antibiotic-resistant Salmonella by consumers in Accra, Ghana.


2010 ◽  
Vol 76 (11) ◽  
pp. 3657-3667 ◽  
Author(s):  
Janine Beutlich ◽  
Irene Rodr�guez ◽  
Andreas Schroeter ◽  
Annemarie K�sbohrer ◽  
Reiner Helmuth ◽  
...  

ABSTRACT Recently, Salmonella enterica subsp. enterica serovar Saintpaul has increasingly been observed in several countries, including Germany. However, the pathogenic potential and epidemiology of this serovar are not very well known. This study describes biological attributes of S. Saintpaul isolates obtained from turkeys in Germany based on characterization of their pheno- and genotypic properties. Fifty-five S. Saintpaul isolates from German turkeys and turkey-derived food products isolated from 2000 to 2007 were analyzed by using antimicrobial agent, organic solvent, and disinfectant susceptibility tests, isoelectric focusing, detection of resistance determinants, plasmid profiling, pulsed-field gel electrophoresis (PFGE), and hybridization experiments. These isolates were compared to an outgroup consisting of 24 S. Saintpaul isolates obtained from humans and chickens in Germany and from poultry and poultry products (including turkeys) in Netherlands. A common core resistance pattern was detected for 27 German turkey and turkey product isolates. This pattern included resistance (full or intermediate) to ampicillin, amoxicillin-clavulanic acid, gentamicin, kanamycin, nalidixic acid, streptomycin, spectinomycin, and sulfamethoxazole and intermediate resistance or decreased susceptibility to ciprofloxacin (MIC, 2 or 1 μg/ml, respectively) and several third-generation cephalosporins (including ceftiofur and cefoxitin [MIC, 4 to 2 and 16 to 2 μg/ml, respectively]). These isolates had the same core resistance genotype, with bla TEM-1, aadB, aadA2, sul1, a Ser83→Glu83 mutation in the gyrA gene, and a chromosomal class 1 integron carrying the aadB-aadA2 gene cassette. Their XbaI, BlnI, and combined XbaI-BlnI PFGE patterns revealed levels of genetic similarity of 93, 75, and 90%, respectively. This study revealed that a multiresistant S. Saintpaul clonal line is widespread in turkeys and turkey products in Germany and was also detected among German human fecal and Dutch poultry isolates.


2021 ◽  
Vol 3 (4) ◽  
pp. 25-30
Author(s):  
Md Hakimul Haque ◽  
Md. Mizanur Rahman ◽  
Md. Lovelu Miah ◽  
Soshe Ahmed ◽  
Md. Rabiul Islam Sazib ◽  
...  

Chicken eggs are a major component of people’s diets, with an average yearly consumption of approximately 103 eggs per person in Bangladesh. Eggs act as an important carrier of food-borne pathogen worldwide. The study was conducted to identify the prevalence and antibiotic resistance pattern of E. coli, Salmonella spp., and Staphylococcus spp., in eggs isolated from farms and different markets of Rajshahi, Bangladesh. A total of 60 eggs were collected randomly between April to December 2019. The isolation and identification of bacterial pathogen was done in accordance with standard procedures. The bacterial isolates were subjected to antibiotic susceptibility testing against seven commonly used antibiotics using Kirby-Bauer disk diffusion method. An overall prevalence of E. coli, Salmonella spp., and Staphylococcus spp. were found to be 35.0%, 28.33%, and 23.33%, respectively. E. coli were found highly resistant to penicillin (100%), tetracycline (80.95%), ampicillin (100%), and erythromycin (85.71%) and were sensitive to amoxicillin (71.42%), ciprofloxacin (85.71%), and gentamicin (95.23%). Salmonella spp. was highly resistant to penicillin (100%), erythromycin (82.35%) and tetracycline (82.35%), and was sensitive to gentamicin (94.11%), amoxicillin (76.47%) and ciprofloxacin (70.58%). Staphylococcus spp. was resistant to penicillin (100%), erythromycin (78.57%), tetracycline (85.71%), amoxicillin (100%), and ampicillin (100%) but sensitive to ciprofloxacin (85.71%), and gentamicin (92.85%). The higher prevalence of multidrug-resistant (MDR) bacteria can easily enter the food chain, which poses a public health threat.


2008 ◽  
Vol 54 (7) ◽  
pp. 569-576 ◽  
Author(s):  
Betty San Martín ◽  
Lisette Lapierre ◽  
Javiera Cornejo ◽  
Sergio Bucarey

The aim of this study was to characterize the antibiotic resistance profiles, the integron-associated resistance determinants, and the potential ability of transferring these determinants by conjugation in Salmonella enterica isolated from swine. Fifty-four strains of Salmonella spp. were isolated from healthy swine. The percentages of resistance, determined by the plate dilution method were as follows: oxytetracycline (41%), streptomycin (39%), sulphamethoxazol+trimethoprim (19%), enrofloxacin–ciprofloxacin (13%), and amoxicillin (0%). The most important resistance serovars were Salmonella Branderburg, Salmonella Derby, Salmonella Typhimurium, and Salmonella Heidelberg. The oxytetracycline-resistant strains amplified the genes tetA (36%), tetB (64%); and the strains resistant to streptomycin and trimethoprim amplified the genes aadA1 (100%) and dfrA1 (100%), respectively. None of the fluoroquinolone-resistant strains amplified the gene qnr. Ten strains amplified the class 1 integron harboring the cassette aadA1. Six strains amplified the class 2 integron harboring the cassettes dfrA1, sat1, and aadA1. The conjugation assays showed that 2 strains transferred the tetA and aadA1 genes and the class 1 integron to a recipient strain. Taken together, the results obtained in this study show a high percentage of resistance in and the presence of integrons in strains of S. enterica isolated from swine. This information should support the implementation of regulations for the prudent use of antimicrobial agents in food-producing animals.


2006 ◽  
Vol 50 (11) ◽  
pp. 3944-3946 ◽  
Author(s):  
Axel Cloeckaert ◽  
Karine Praud ◽  
Benoît Doublet ◽  
Marie Demartin ◽  
François-Xavier Weill

ABSTRACT We report a new Salmonella genomic island 1 variant antibiotic resistance gene cluster called SGI1-L in a Salmonella enterica serovar Newport isolate containing a dfrA15 gene cassette conferring resistance to trimethoprim. The isolate carried another class 1 integron containing the aacC5 and aadA7 gene cassettes conferring resistance to gentamicin and streptomycin/spectinomycin, respectively.


1998 ◽  
Vol 42 (12) ◽  
pp. 3053-3058 ◽  
Author(s):  
Fabio Tosini ◽  
Paolo Visca ◽  
Ida Luzzi ◽  
Anna Maria Dionisi ◽  
Cristina Pezzella ◽  
...  

ABSTRACT The presence and genetic content of integrons were investigated for 37 epidemiologically unrelated multiple-drug-resistant strains ofSalmonella enterica serotype Typhimurium from humans. All isolates were resistant to ampicillin, chloramphenicol, kanamycin, streptomycin, sulfonamides, and trimethoprim, as well as to tetracycline and/or nalidixic acid; 20% of them were also resistant to gentamicin and amikacin. Three different class 1 integrons (In-t1, In-t2, and In-t3) were identified by Southern blot hybridization, PCR, and DNA sequencing, and these integrons were found to carry theaadB, catB3, oxa1,aadA1a, aacA4, and aacC1 gene cassettes. Integrons In-t1 (aadB and catB3) and In-t2 (oxa1 and aadA1a) were both located on a conjugative IncFI plasmid of 140 kb. In-t3 (aacA4,aacC1, and aadAIa) was located on an IncL/M plasmid of 100 kb which was present, in association with the IncFI plasmid, in gentamicin- and amikacin-resistant isolates. Despite the extensive similarity at the level of the antibiotic resistance phenotype, integrons were not found on the prototypic IncFI plasmids carried by epidemic Salmonella strains isolated during the late 1970s. The recent appearance and the coexistence of multiple integrons on two conjugative plasmids in the sameSalmonella isolate are examples of how mobile gene cassettes may contribute to the acquisition and dissemination of antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document